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General conventions

In this section, some peculiarities of presentation used in the book are explained.
These things make the book as a whole much more organized and accessible but
are perhaps not easily grasped without some explanation.

The symbolism �a� in the present book is a shorthand for “the syntactical
object (type, not token) a”, a shorthand which will be of some use in the context of
notational history—and in the following explanations. Often in this book, it will
be necessary to observe more consistently than usual in mathematical writing the
distinction between a symbolic representation and the object denoted by it (which
amounts to the distinction between use and mention); however, no effort was made
to observe it throughout if there were no special purpose in doing so. We stress
that this usage of �a� is related to but not to be confounded with usages current
in texts on mathematical logic, where �a� often is the symbol for a Gödel number
of the expression a or is applied according to the “Quine corner convention” (see
[Kunen 1980, 39]).

Various types of cross-reference occur in the book including familiar uses of
section numbers and numbered footnotes1. Another type of cross-reference, how-
ever, is not common and has to be explained; it serves to avoid the multiplication
of quotations of the same, repeatedly used passage of a source and the cutting up
of quotations into microscopical pieces which would thus lose their context. To this
end, a longer quotation is generally reproduced at one place in the book bearing
marks composed of the symbol # and a number in the margin; at other places in
the book, the sequence of signs �〈#X p.Y 〉� refers to the passage marked by #X
and reproduced on p.Y of the book.

References to other publications in the main text of the book are made by
shorthands; for complete bibliographical data, one has to consult the bibliography
at the end of the book. The shorthands are composed of an opening bracket,
the name of the author(s), the year of publication2 plus a diacritical letter if

1References to pages (p.), with the exception of the #-notation explained below, are always to
cited texts, never to pages of the present book. References to notes (n.), however, are to the notes
of the present book if nothing else is indicated explicitly. Footnotes are numbered consecutively
in the entire book to facilitate such cross-references.

2of the edition I used which might be different from the first edition; in these cases, the year
of the first edition is mentioned in the bibliography.
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needed, sometimes the number(s) of the page(s) and/or the note(s) concerned
and a closing bracket. This rather explicit form of references allows the informed
reader in many cases to guess which publication is meant without consulting the
bibliography; however, it uses a relatively large amount of space. For this reason,
I skip the author name(s) or the year where the context allows. In particular, if
a whole section is explicitly concerned primarily with one or several particular
authors, the corresponding author names are skipped in repeated references; a
similar convention applies to years when a section concerns primarily a certain
publication.

There is a second use of brackets, in general easily distinguished from the one
in the context of bibliographical references. Namely, my additions to quotations
are enclosed in brackets3. Similarly, �[ . . . ]� marks omissions in quotations. The
two types of brackets combine in the following way: references to the literature
which are originally contained in quotations are enclosed in two pairs of brackets.
[[ . . . ]]. What is meant by this, hence, is that the cited author himself referred to
the text indicated; however, I replace his form of reference by mine in order to
unify references to the bibliography. (Nervous readers should keep this convention
in mind since cases occur where a publication seems to refer to another publication
which will only appear later.)

Many terms can have both common language and (several) technical uses,
and it is sometimes useful to have a typographical distinction between these two
kinds of uses. The convention applied (loosely) in the present book is to use a
sans serif type wherever the use in the sense of category theory is intended. This
is particularly important in the case of the term “object”: �object� stands for
its nontechnical uses, while �object� stands for a use of the term “object” in the
sense of category theory. In this case, an effort was made to apply this convention
throughout; that means that even if �object� occurs in a technical context, one
should not read it as “object of a category”. A similar convention applies to the term
“arrow”; however, since nontechnical uses of the term occur not very often, and in
technical uses the term is sometimes substituted by “morphism”, the distinction is
less important here (and hence was less consequently observed).

In the case of “category”, I tried to avoid as far as possible any uses with
a signification different from the one the term takes in category theory; it was
not necessary, hence, to put �category� for the remaining uses. However, there
is one convention to keep in mind: the adjective “categorial” (without �c�) is
exclusively used as a shorthand for “category theoretic” (as in the combination “the
categorial definition of direct sum”), while “categorical” (with �c�) has the usual
model-theoretic meaning (as in “Skolem showed that set theory is not categorical”).
But note that this convention has not been applied to quotations (commonly,

3Such additions are mostly used to obtain grammatically sound sentences when the quotation
had to be shortened or changed to fit in a sentence of mine or if the context of the quotation is
absent and has to be recalled appropriately. If I wish to comment directly on the passage, there
might be brackets containing just a footnote mark; the corresponding footnote is mine, then. If
there are original notes, however, they are indicated as such.
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“categorical” seems to be used in both cases).
There is a certain ambiguity in the literature as to the usage of the term

“functorial”; this term means sometimes what is called “natural” in this book (com-
pare section 2.3.4.1), while I use “functorial” only to express that a construction
concerns objects as well as arrows.

Translations of quotations from texts originally written in French or German
are taken, as far as possible, from standard translations; the remaining translations
are mine. Since in my view any translation is already an interpretation, but quoting
and interpreting should not be mixed up, I provide the original quotations in the
notes. This will also help the reader to check my translations wherever they might
seem doubtful.

If a quotation contains a passage that looks like a misprint (or if there is
indeed a misprint which is important for the historical interpretation), I indicate
in the usual manner (by writing sic!) that the passage is actually correctly repro-
duced.

The indexes have been prepared with great care. However, the following
points may be important to note:

• mathematical notions bearing the name of an author (like “Hausdorff space”,
for instance) are to be found in the subject index;

• words occurring too often (like “category (theory)”, “object”, “set”, “functor”)
have only been indexed in combinations (like “abelian category” etc.);

• boldface page numbers in the subject index point to the occurrence where
the corresponding term is defined.



Introduction

0.1 The subject matter of the present book

0.1.1 Tool and object

Die [ . . . ] Kategorientheorie lehrt das Machen, nicht die Sachen.
[Dath 2003]

The basic concepts of what later became called category theory (CT) were
introduced in 1945 by Samuel Eilenberg and Saunders Mac Lane. During the
1950s and 1960s, CT became an important conceptual framework in many areas
of mathematical research, especially in algebraic topology and algebraic geometry.
Later, connections to questions in mathematical logic emerged. The theory was
subject to some discussion by set theorists and philosophers of science, since on
the one hand some difficulties in its set-theoretical presentation arose, while on the
other hand it became interpreted itself as a suitable foundation of mathematics.

These few remarks indicate that the historical development of CT was marked
not only by the different mathematical tasks it was supposed to accomplish, but
also by the fact that the related conceptual innovations challenged formerly well-
established epistemological positions. The present book emerged from the idea
to evaluate the influence of these philosophical aspects on historical events, both
concerning the development of particular mathematical theories and the debate on
foundations of mathematics. The title of the book as well as its methodology are
due to the persuasion that mathematical uses of the tool CT and epistemological
considerations having CT as their object cannot be separated, neither historically
nor philosophically. The epistemological questions cannot be studied in a, so to
say, clinical perspective, divorced from the achievements and tasks of the theory.

The fact that CT was ultimately accepted by the community of mathemati-
cians as a useful and legitimate conceptual innovation is a “resistant” fact which
calls for historical explanation. For there were several challenges to this acceptance:

• at least in the early years, CT was largely seen as going rather too far in
abstraction, even for 20th century mathematics (compare section 2.3.2.1);

• CT can be seen as a theoretical treatment of what mathematicians used to
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call “structure”, but there were competing proposals for such a treatment (see
especially [Corry 1996] for a historical account of this competition);

• the most astonishing fact is that CT was accepted despite the problems
occuring in the attempts to give it a set-theoretical foundation. This fact
asks both for historical and philosophical explanation.

The general question flowing from these observations is the following: what is
decisive for the adoption of a conceptual framework in a mathematical working
situation? As we will see, in the history of CT, innovations were accepted pre-
cisely if they were important for a practice and if a character of “naturality” was
attributed to them. While the first condition sounds rather trivial, the second is
not satisfactory in that the attribution of a character of “naturality” asks itself for
an explanation or at least an analysis.

In this analysis of the acceptance of the conceptual innovations around CT,
I will throughout take a clear-cut epistemological position (which will be sketched
below) because I do not think that a purely descriptive account could lead to
any nontrivial results in the present case. In my earlier [Krömer 2000], I tried to
present such a descriptive account (using a Kuhnian language) in the case of the
acceptance of the vector space concept. In that case, it had to be explained why
this concept was so long not widely accepted (or even widely known) despite its
fertility. The case of CT is different because there, a conceptual framework, once
its achievements could be seen, was quite quickly accepted despite an extensive
discussion pointing out that it does not satisfy the common standards from the
point of view of logical analysis.

Hence, if fruitfulness and naturality are decisive in such a situation, a supple-
mentary conclusion has to be drawn: not only can the way mathematicians decide
on the relevance of something be described in Kuhnian terms4 but moreover the
decision on relevance can “outvote” the decision on admissibility if the latter is
taken according to the above-mentioned standards, or to put it differently, these
standards are not central in decision processes concerning relevance. This is of
interest for people who want, in the search for an epistemology of mathematics,
to dispense with the answers typically given by standard approaches to mathe-
matical epistemology (and ontology), like the answers provided by foundational
interpretation of set theory and the like. But this dispensation would not be pos-
sible solely on the grounds of the fact that cases can be found in history where
decisions were taken contrary to the criteria of these standard approaches. One
has to show at least that in the present case the acceptation of a concept or object
by a scientific community amounts to (or implies) an epistemological position-
ing of that community. The thesis explored in this book is the following: the way
mathematicians work with categories reveals interesting insights into their implicit

4This was one of the results of [Krömer 2000]. Thus, while those might be right who main-
tain that revolutions in Kuhn’s sense do not occur in mathematics (this matter was broadly
discussed in [Gillies 1992]), Kuhnian language is not completely obsolete in the historiography
of mathematics.
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philosophy (how they interpret mathematical objects, methods, and the fact that
these methods work).

Let me repeat: when working with and working out category theory, the
mathematicians observed that a formerly well-established mode of construction of
mathematical objects, namely in the framework of “usual” axiomatic set theory,
was ill-adapted to the purpose of constructing the objects intervening in CT5.
One reaction was to extend freely the axiom system of set theory, thus leaving the
scope of what had become thought of as “secure” foundations; another was to make
an alternative (i.e., non-set-theoretical) proposal for an axiomatic foundation of
mathematics. But whatever the significance of these reactions, one observes at
the same time that translations of intended object constructions in terms of the
proposed formal systems are awkward and do actually not help very much in
accomplishing an intended task of foundations, namely in giving a philosophical
justification of mathematical reasoning. It turns out that mathematicians creat-
ing their discipline were apparently not seeking to justify the constitution of the
objects studied by making assumptions as to their ontology.

When we want to analyze the fact that, as in the case of the acceptance
of CT, something has been used despite foundational problems, it is natural to
adopt a philosophical position which focusses on the use made of things, on the
pragmatic aspect (as opposed to syntax and semantics). For what is discussed,
after all, is whether the objects in question are or are not to be used in such
and such a manner. One such philosophical position can be derived from (the
Peircean stream of) pragmatist philosophy. This position—contrary to traditional
epistemology—takes as its starting point that any access to objects of thought
is inevitably semiotical, which means that these objects are made accessible only
through the use of signs. The implications of this idea will be explored more fully in
chapter 1; its immediate consequence is that propositions about the ontology of the
objects (i.e., about what they are as such, beyond their semiotical instantiation)
are, from the pragmatist point of view, necessarily hypothetical.

There is a simple-minded question readily at hand: does CT deserve the
attention of historical and philosophical research? Indeed, enthusiasm and expec-
tations for the elaboration of this theory by the mathematical community seem to
have decreased somewhat—though not to have disappeared6—since around 1970
when Grothendieck “left the stage”. The conclusion comes into sight that after all
one has to deal here, at least sub specie aeternitatis, with a nine days’ wonder.
But this conclusion would be just as rash as the diametral one, possible on the

5Perhaps one should rephrase this statement since for object construction in practice, math-
ematicians use ZFC only insofar as the operations of the cumulative hierarchy are concerned,
but they use the naive comprehension axiom (in a “careful” manner) insofar as set abstraction
is concerned. So ZFC is not really (nor has been) the framework of a “well-established mode of
construction of mathematical objects”. ZFC may be seen as a certain way to single out, on a level
of foundational analysis, uses of the naive comprehension axiom which are thought of as being
unproblematic; in this perspective, CT may be seen as another way to do the same thing.

6Recently, there has even been some feuilletonist “advertising” for the theory in a German
newspaper; [Dath 2003].
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sole inspection of the situation in the late 1960s, that the solution of more or less
every problem in, e.g., algebraic geometry, will flow from a consequent application
of categorial concepts. The analysis of the achievements of CT contained in the
present work will, while this is not the primary task, eventually show that CT did
actually play an outstanding role for some mathematical developments of the last
fifty years that are commonly considered as “important”.

This said, there is perhaps no definite space of time that should pass before
one can hope for a sensible evaluation of the “importance” of some scientific trend.
Anyway, I hold that the investigation of the epistemological questions put forward
by such a trend just cannot wait, but should be undertaken as soon as possible (cf.
1.1.1). And indeed, this investigation was, in the case of CT, undertaken almost
simultaneously with the development of the theory. Even the most far-reaching of
these questions, whether CT can, at least in some contexts, replace set theory as
a tool of epistemological analysis of mathematics, can be attacked independently
of a definite evaluation of the importance of CT, if the answer does not claim
validity “beyond history” but considers mathematics as an activity depending in
its particular manifestations on the particular epoch it belongs to.

This position might seem too modest to some readers (who want a philosophy
of mathematics to explain the “necessity” of mathematics), but compared to other
positions, it is a position not so easily challenged and not so much relying on a
kind of faith in some “dogma” not verifiable for principal reasons.

0.1.2 Stages of development of category theory

What is nowadays called “category theory” was compiled only by and by; in par-
ticular, it was only after some time of development that a corpus of concepts,
methods and results deserving the name theory7 (going beyond the “theory of
natural equivalences” in the sense of Eilenberg and Mac Lane [1945]) was arrived
at. For example, the introduction of the concept of adjoint functor was impor-
tant, since it brought about nontrivial questions to be answered inside the theory
(namely “what are the conditions for a given functor to have an adjoint?” and
the like). The characterization of certain constructions in diagram language had
a similar effect since thus a carrying out of these constructions in general cat-
egories became possible—and this led to the question of the existence of these
constructions in given categories. Hence, CT arrived at its own problems (which
transformed it from a language, a means of description for things given otherwise,
into a theory of something), for example problems of classification, problems to
find existence criteria for objects with certain properties etc.

Correspondingly, the term “category theory” denoting the increasing collec-
tion of concepts, methods and results around categories and functors came into use
only by and by. Eilenberg and Mac Lane called their achievement general theory
of natural equivalences; they had the aim to explicate what a “natural equivalence”

7Compare 1.2.2.1.
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is, and it was actually for this reason that they thought their work to be “the only
necessary research paper on categories” 〈#3 p.65〉. Eilenberg and Steenrod used
the vague expression the concepts of category, functor, and related notions (see
2.4.2). Grothendieck spoke about langage fonctoriel [1957, 119], and Mac Lane for
a long time about categorical algebra8. It is hard to say who introduced the term
category theory or its French equivalent—maybe Ehresmann?

This amorphous accumulation of concepts and methods was cut into pieces
in several ways through history. We will encounter distinctions between the lan-
guage CT and the tool CT, between the concept of category considered as aux-
iliary and the opposite interpretation, between constructions made with objects
and constructions on the categories themselves, between the term functor as a
“metamathematical vocabulary” on the one hand and as a mathematical object
admitting all the usual operations of mathematics on the other, between CT in
the need of foundations and CT serving itself as a foundation, and so on. These
distinctions have been made in connection with certain contributions to CT which
differed from the preceding ones by giving rise to peculiar epistemological difficul-
ties not encountered before. It would be naive to take for granted these distinctions
(and the historical periodizations related to them); rather, we will have to submit
them to a critical exam.

0.1.3 The plan of the book

This book emerged from my doctoral dissertation written in German. However,
when being invited to publish an English version, I conceived this new version
not simply as a mere translation of the German original but also as an occasion
to rethink my presentation and argumentation, taking in particular into account
additional literature that came to my attention in the meantime as well as many
helpful criticisms received from the readers of the original. Due to an effort of
unity in method and of maturity of presented results, certain parts of the original
version are not contained in the present book; they have been or will be published
elsewhere in a more definitive form9.

Besides methodological and terminological preliminaries, chapter 1 has the
task to sketch an epistemological position which in my opinion is adequate to
understand the epistemological “implications” of CT. This position is a pragmatist
one. The reader who is more interested in historical than epistemological matters
may skip this chapter in a first reading (but he or she will not fully understand

8Compare the titles of [Mac Lane 1965], [Eilenberg et al. 1966], and [Mac Lane 1971a], for
instance.

9This concerns in particular outlines of the history of the concepts of universal mapping,
of direct and inverse limits and of (Brandt) groupoid. The reader not willing to wait for my
corresponding publications is referred to the concise historical accounts contained in [Higgins
1971, 171-172] (groupoid), or [Weil 1940, 28f] (inverse limit). See also section 0.2.3.1 below.
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the philosophical conclusions towards the end of the book unless the first chapter
is read); however, some terminology introduced in this chapter will be employed
in the remaining chapters without further comment.

Chapters 2–4 are concerned with the development of CT in several contexts
of application10: algebraic topology, homological algebra and algebraic geometry.
Each chapter presents in some detail the original work, especially the role of cate-
gorial ideas and notions in it. The three chapters present a climax: CT is used to
express in algebraic topology, to deduce in homological algebra and, as an alter-
native to set theory, to construct objects in Grothendieck’s conception of algebraic
geometry. This climax is related to the distinction of different stages of conceptual
development of CT presented earlier.

The three mathematical disciplines studied in detail here as far as the inter-
action with CT is concerned are actually very different in nature. The adjective
“algebraic” in the combination “algebraic topology” specifies a certain methodolog-
ical approach to topological problems, namely the use of algebraic tools. It is true
that these tools are very significant for some problems of topology and less signif-
icant for others; thus, algebraic topology singles out or favors some questions of
topology and can in this sense be seen as a subdivision of topology treating certain
problems of this discipline. However, the peculiarity of algebraic topology is not
the kind of objects treated but the kind of methods employed. In the combination
“algebraic geometry”, on the other hand, the adjective “algebraic” specifies first of
all the origin of the geometrical objects studied (namely, they have an algebraic
origin, are given by algebraic equations). Hence, the discipline labelled algebraic
geometry studies the geometrical properties of a specific kind of objects, to be
distinguished from other kinds of objects having as well properties which deserve
the label “geometrical” but are given in a way which does not deserve the label
“algebraic”. It depended on the stage of historical development of algebraic geom-
etry to what degree the method of this discipline deserved the label “algebraic”
(see 3.2.3.1, for instance); in this sense, algebraic geometry parallels topology in
general in its historical development, and inside this analogy, algebraic topology
parallels the algebraic “brand” of methods in algebraic geometry. The terminol-
ogy “homological algebra”, finally, was chosen by its inventors to denote a certain
method (using homological tools) to study algebraic properties of “appropriate”
objects; the method was at first applied exclusively to objects deserving the label
“algebraic” (modules) but happened to apply equally well to objects which are
both algebraic and topological (sheaves). The historical connection between the
three disciplines is that tools developed originally in algebraic topology and ap-
plied afterwards also in algebra became finally applicable in algebraic geometry
due to reorganizations and generalizations both of these tools and their conditions
of applicability and of the objects considered in algebraic geometry. This historical
connection will be described, and it will especially be shown that it emerged in
interaction with CT.

10The relation of a theory to its applications will be discussed in section 1.2.2.3.
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In this tentative description of the three disciplines, no attempt was made
to specify the signification of the decisive adjectives “algebraic”, “topological”, “ge-
ometrical” or “homological”. I suggest that at least in the first three cases every
reader learned in mathematics has an intuitive grasp of how these adjectives and
the corresponding nouns are usually employed; in fact, it was attributed to this
intuitive grasp whenever appeal was made to whether something “deserved” to be
labelled such and such or not. The signification of the fourth term is more tech-
nical, but still most of the readers who can hope to read a book on the history
of category theory with profit will not have difficulties with this. The description
used also some terms of a different kind, not related to particular subdisciplines of
mathematics, namely “method”, “tool”, “object”, “problem” and so on. These terms
are well established in common everyday usage, but their use in descriptions of a
scientific activity reveals deeper epistemological issues, as will be shown in chap-
ter 1. These issues are related to the different tasks CT was said to accomplish
in the respective disciplines: express, deduce, construct objects. To summarize, I
will proceed in this book in a manner that might at first glance appear somewhat
paradoxical: I will avoid analyzing the usage of certain technical terms but will
rather do that for some non-technical terms. But this is not paradoxical at all, as
will be seen.

While the study of the fields of application in chapters 2–4 is certainly cru-
cial, there has been considerable internal development of CT from the beginnings
towards the end of the period under consideration, often in interaction with the
applications. While particular conceptual achievements often are mentioned in
the context of the original applications in chapters 2–4, it is desirable to present
also some diachronical, organized overview of these developments. This will be
done in chapter 5. It will turn out that category theory penetrated in fields for-
merly treated differently by a characterization of the relevant concepts in diagram
language; this characterization often went through three successive stages: elimi-
nation of elements, elimination of special categories in the definitions, elimination
of nonelementary constructions. In this chapter, we will be in a position to formu-
late a first tentative “philosophy” of category theory, focussing on “what categorial
concepts are about”.

In chapter 6, the different historical stages of the problems in the set-theo-
retical foundation of CT are studied. Such a study has not yet been made.

In chapter 7, some of the first attempts to make category theory itself a foun-
dation of mathematics, especially those by Bill Lawvere, are described, together
with the corresponding discussions.

In the last chapter, I present a tentative philosophical interpretation of the
achievements and problems of CT on the grounds of what is said in chapter 1
and of what showed up in the other chapters. A sense in which CT can claim
to be “fundamental” is discussed. The interpretation presented is not based on
set-theoretical/logical analysis; such an interpretation would presuppose another
concept of legitimation than the one actually used, as my analysis shows, by the
builders of the scientific system. (More precisely, I stop the investigation of the
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development of this system more or less with the programmatic contributions of
Grothendieck and Lawvere; it is in this form that CT entered the consciousness of
many mathematicians since, so it seems to be justified to adopt such a restricted
perspective.) One can say that CT manifests the obsoleteness of foundational
endeavours of a certain type (this is my contribution to a historization of the
philosophical interpretation of mathematics).

0.1.4 What is not in this book

The book as a historical work11 is intended to be no more than a history of
some aspects of the development of category theory, not of the development as a
whole. Mac Lane, in his paper [1988a], makes an attempt (perhaps not entirely
exhaustive but in any case meritorious) to give a bibliographical account of the
totality of works and communities influenced by CT. Such a bibliography should
certainly be contained also in a book aiming to become a standard reference, but
the consequence would be a mere mention of titles without any comment as to
their content and their relation to other contributions; in view of the main theses
of the book, to provide such an apparatus seemed unnecessary to me12.

Similarly, while considerable stress is placed on various mathematical ap-
plications of category theory, the book is clearly not intended to be a history
of algebraic topology, homological algebra, sheaf theory, algebraic geometry set
theory etc. Historical treatments of these matters are listed, as far as they are
provided for in the literature, in the bibliography13. What is treated here is the
interaction of these matters with category theory. Where historical information
concerning these matters is needed in the analysis of this interaction, this infor-
mation is taken from the literature or, where this is not yet possible, from some
original research.

Throughout the book, I not only try to answer particular questions con-
cerning the historical and philosophical interpretation of CT, but also to mention
questions not answered and remaining open for future research.

Here are the most important conscious omissions:

• The most unsatisfactory gap is perhaps that there is no systematic discussion
of Ehresmann’s work and influence. Only a few particular aspects are men-
tioned, like the contributions to the problems of set-theoretical foundation
of category theory by Ehresmann-Dedecker (see 6.5) and by Bénabou (see
7.4.2) or Ehresmann’s important concept of esquisse (sketch) (see n.524); I

11Much like the historical analysis, the philosophical interpretation proposed in this book does
not take into account more recent developments in the theory.

12Besides [Mac Lane 1988a], pointers to relevant literature can often be found in
bibliographical-historical notes in the original works themselves and in textbooks. Such notes
are contained for example in [Ehresmann 1965, 323-326] as well as in [Eilenberg and Steen-
rod 1952], [Mac Lane 1971b], and [Barr and Wells 1985] after each chapter. For the secondary
literature in general, see also 0.2.1.

13The corresponding references are indicated where the respective matter is discussed.
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used [Ehresmann 1965] as historical secondary literature to some degree. It
seems that there have been few interactions between Ehresmann’s activities
with the “mainstream” in the period under consideration—and this may have
caused me to leave them out since I accentuated interactions.

• Among the applications of category theory in algebraic topology, only those
are treated which do belong to the immediate context of the emergence of
the theory. That means, I do not discuss the later joint work of Eilenberg
and Mac Lane on various topics of algebraic topology14 or the role of CT
in homotopy theory (Kan, Quillen)15, and I barely mention the theory of
simplicial sets (in section 2.5).

• There is nothing on the history of K-theory; see [Carter 2002] and [Marquis
1997a].

• Grothendieck’s monumental autobiographical text Récoltes et semailles was
barely used. When I wrote the first version of this book, there was no simple
access to this text. Searchable pdf-versions of the text have become available
online since, so the task of finding all the parts which relate to our subject
matter would be easier now. But still, a thorough evaluation of it would have
delayed considerably the publication of the present book; hence I postponed
this. See [Herreman 2000] for some evaluation.

• I do not discuss more recent developments like n-categories and A∞-categories
much of which owe their existence to Grothendieck’s programmatic writings
and their encounter with the russian school (Manin, Drinfeld, . . . ).

• There are other communities whose contributions are not treated; for in-
stance, the German community that worked on algebraic topology (Dold,
Puppe) and categorial topology (Herrlich). In the latter case, see [Herrlich
and Strecker 1997].

0.2 Secondary literature and sources

Perhaps in any historical study, the choice of cited sources is contingent in at least
two respects: some source might be accidentally unknown or inaccessible to the
author; in the case of others, he might, by an arbitrary act, decide that they are
neglectable. An author is to be blamed for errors of the first kind; moreover, he
is to be blamed if by a lack of explicitness, inaccessibility, conscious neglect and
real ignorance are not distinguished one from another. Thus, it is better to be as
explicit as possible. I have no idea whether the efforts of completeness made in
the present book will be considered as sufficient by the reader. Anyway, the reader
may find it useful to have some remarks about the cited sources at hand.

14See [Dieudonné 1989] part 3 chapter V section C, for instance.
15See [Dieudonné 1989] part 3 chapter II.
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0.2.1 Historical writing on category theory: the state of the art and
a necessary change of perspective

There is already some historical writing on category theory; consequently, some-
thing should be said here on how the present book relates to this literature. First
of all, I do not intend to make the book a standard reference in the sense of a
complete collection and reproduction in outline of the results contained in the
existing literature. Rather, the present discussion will focus on questions not yet
covered in the literature on the one hand (this is the case in particular of chapter
6) and on answers which are given in this literature but need to be reevaluated in
my opinion (see for example 2.1.2.4 or 2.3.3).

The need of reevaluation concerns also methodological issues. The larger part
of the existing literature was written primarily by the protagonists of category
theory and is to a large degree a collection of chronicle-like accounts aligning tech-
nical details with autobiographical notes (if not anecdotes). Those who themselves
worked out a theory have a clear idea about the “naturality” or the “fruitfulness”
of the theory, an idea which in fact motivated them and showed them the way
to follow in the development of the theory and which is eventually inseparable
from their intuition or vision of the theory. It would be hard for them to step
aside and see these convictions as something contingent that asks for historical
interpretation and that poses philosophical problems. Very practically, these con-
victions might deform the protagonists’ memory: the (possibly incoherent) facts
are sometimes replaced by a synthetic, coherent picture of the matter. Hence, this
literature contains obviously a large amount of valuable and interesting informa-
tion, but a thorough discussion of the problems posed by this history (especially
of the philosophical debates concerned) is practically absent. To achieve this, the
synthetic pictures have to be confronted, as far as possible, with the facts.

Now, there is also some literature written by professional historians and
philosophers. McLarty, in his paper [1990], presents the history of topos theory
(and of CT giving rise to it) in order to reject a common false view that the
concept of topos emerged as a generalization of the category of sets.

Another work by a professional historian is [Corry 1996]. As becomes clear
from the preface, this book was originally conceived as a history of category theory;
however, Corry decided to put his historical account of CT into the larger context
of the history of the concept of “algebraic structure”. Consequently, Corry devoted
large parts of his book to the study of the contributions of Dedekind, Hilbert,
Noether and others, and category theory is given an after all quite concise account
ofwards the end of the book. The reader gets, whether this is intended or not,
the impression that CT is presented as the culmination point of a development
stressing increasingly the concept of structure; on the other hand, one is somewhat
disappointed since the idea that CT and this (after all quite unclear) concept must
be somehow interrelated seems more or less to be taken for granted.

Corry compares CT and Bourbaki’s theory of structures and gives an account
of the Bourbaki discussion on categories in which he mainly stresses the role of this
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competition16. I agree that these matters have been quite important in the history
of CT and in the philosophical discussion concerning it, but I would like to add
that if one wants to have a picture of CT with reasonable hope of including not
just one important aspect, but a complete set of at least the most important and
central features, one has to pay equally attention to other discussions concerning
CT (only very briefly mentioned in Corry’s book), namely the ones concerning
set-theoretical foundations for CT and concerning CT as a foundation. It is true,
category theory has been more fruitful in structural mathematics than Bourbaki’s
theory of structures, but in my opinion, one can sensibly explain why, and the
explanation will be but a byproduct of a closer (historical and philosophical) in-
spection of the relation between category theory and set theory.

0.2.2 Philosophical writing on CT

Despite the book’s being also a philosophical account of CT, little attention is
paid to other work interpreting CT from some philosophical point of view or using
it to lend support to some philosophical theses. The number of publications on
this topic is frighteningly large (and I did not even make an effort to list them
completely in the bibliography). For instance, I do not comment on Lawvere’s
Hegelianism or Mac Lane’s book Mathematics: Form and Function [1986a]. This
might be regretted by some readers, but the intention of the philosophical parts
of the book is not to present an overview of the existing philosophical literature
on CT, but to contribute to it with an original philosophical interpretation of CT
which has so little in common with the existing literature (and in most cases relies
so little on it) that a presentation of this literature can largely be omitted.

However, I use numerous contributions to philosophy of mathematics in gen-
eral; they are written by authors of different philosophical “colour” and include
some essays written by “working” mathematicians.

0.2.3 Unpublished sources

Any serious historical investigation has to tackle unpublished documents. Some-
times it involves some research to find them (see 0.2.3.2).

0.2.3.1 Bourbaki

In the original version of this book, a chapter was devoted to a reconstruction of
Bourbaki’s internal debate concerning the adoption of categorial language in the
Eléments de mathématiques; this chapter was accompanied by an appendix indi-
cating some details concerning the (mostly unpublished) sources which made the
reconstruction possible. These investigations constitute a historical work in its own
right, rather independent both in method and in results from the main matter of

16The totality of the sources now accessible allows for a more complete picture of this discus-
sion, see [Krömer 2006b]; the competition of categories and structures is but one of its aspects.
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the present book, and are published separately; see [Krömer 2006b]. However, while
the debate did not primarily concern questions of philosophical interpretation of
category theory, it was not indifferent to some of them, especially concerning the
structural method in mathematics on the one hand and set-theoretical foundations
on the other hand. Moreover, since some of the Bourbaki members participating
in this debate at the same time are among the most important protagonists of
the history to be told in the present book, an account of their views on these
questions, as explicitly or implicitly expressed in the sources of the debate, could
not be omitted without damage to the analysis to be made. Consequently, it was
not possible (nor desirable) to eliminate all details of the Bourbaki debate from
the present version of the book. In the cases where such details were necessary,
I avoided wherever possible annoying repetition of reference to my above-cited
article17 and rather copied the relevant quotations and interpretations (this is es-
pecially the case in 6.4.4.2). For some abbreviations used in the description of the
corresponding sources, cf. appendix A.3.

0.2.3.2 The Samuel Eilenberg records at Columbia University. A recently redis-
covered collection

A key personality in the history of category theory is Samuel Eilenberg. Actually, in
his case my research was not confined to his numerous publications: Besides several
contributions from his pen to the Bourbaki project, unpublished but archived in
Nancy, I had the opportunity to consult, during a short stay18 in June 2001 at
Columbia University, a substantial part of Eilenberg’s mathematical and personal
papers. These materials were asleep in filing cabinets and libraries until the staff
of the Columbia University Archives, following a corresponding inquiry of mine,
managed to find them and to transfer them to the archives. In all, the collection
consists of

1. some thirty books on mathematics constituting a small reference library used
by Eilenberg;

2. a substantial part of Eilenberg’s scientific correspondence;

3. several unpublished manuscripts19;

4. materials from Eilenberg’s time as a student in Poland (lecture notes, diploma,
enrollments at foreign universities);

17This notwithstanding, one will need to consult this article for exact bibliographical references
to the unpublished material, and for more ample information concerning the internal functioning
of Bourbaki which will be needed in order to appreciate fully the significance of the conclusions
drawn from this material.

18made possible by financial support accorded by the French research ministry.
19among them, some more contributions to the Bourbaki project, especially a report on how to

introduce categories into the Eléments and a manuscript on homological algebra covering parts
of the theory of abelian categories developed by Buchsbaum and Grothendieck. See [Krömer
2006b].
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5. personal papers as there are passports, documents concerning marital status
etc.;

6. a huge amount of materials related to the acquisition and donation of his
famous collection of ancient Asian art (now constituting the Samuel Eilenberg
collection of the Metropolitan Museum).

Concerning the scientific correspondence, there are present virtually all sci-
entific letters Eilenberg received before and during the first half of World War
II, covering letters by Karol Borsuk (who supervised Eilenberg’s dissertation),
M. L. Cartwright, Eduard Čech, David van Dantzig, Hans Freudenthal, G. H.
Hardy, Heinz Hopf, Witold Hurewicz, Shizuo Kakutani, Bronisław Knaster, Kaz-
imierz Kuratowski, Solomon Lefschetz, Marston Morse, Leopold Vietoris, J. H.
C. Whitehead, Oskar Zariski, Leo Zippin, and Antonin Zygmund. This collection
of letters alone (although there is practically no corresponding letter written by
Eilenberg in the collection) is doubtless of a great historical interest. The Columbia
collection moreover covers substantial correspondence for the time of Eilenberg’s
post-war career.

0.2.4 Interviews with witnesses

Beyond published and unpublished text documents, I could rely on a certain num-
ber of personal reminiscences of some researchers in the field who were themselves
involved in the events or at least pursued them closely. It goes without saying that
I have the exclusive responsibility for the precise formulation of their utterings
as given in the book, especially in the cases where I might have mistaken their
utterings (or reproduced them in a way giving rise to mistakes). In any case, the
interviews are not reproduced in one specific section, but the particular informa-
tion is integrated in the systematic study at places considered appropriate. This
practice is somewhat at variance with my practice concerning (certain) sources,
but I do not think that my notes and memories of these interviews constitute a
corpus of information to be treated with the same respect and caution as written
sources.

The interview partners were Jean Bénabou, Pierre Cartier, Jacques Dixmier,
Andrée Ehresmann, Anders Kock, F.William Lawvere and Gerd Heinz Müller.
Some of them made contributions of relevance to the development of category
theory; others have been in close and continual contact to other protagonists not
being available themselves for an interview. Their memories were highly valuable
in filling certain gaps in the reconstruction of the events; their overall views of the
matter have been, even though the general criticisms of section 0.2.1 might apply in
some cases to a certain degree, very helpful for the beginner in his struggle to find
practicable ways of interpretation. Consequently, also information or assessments
of a more general kind found their way from these interviews into the book without
being always specified as such.
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It is true, one could nevertheless ask for a larger set of witnesses; my efforts
at personal contact were not always successful (certainly for reasons of age in the
case of Saunders Mac Lane and Henri Cartan), and in other cases I was perhaps
right to consider such efforts as too difficult.

0.3 Some remarks concerning historical methodology

0.3.1 How to find and how to organize historical facts

He or she who is confronted with an extended collection of historical facts faces
traditionally the task to organize these facts. Naively, the idea is that it is only and
first of all by such an organization that one attains a command of the amorphous
mass of historical facts without which one cannot even try to submit it to a
historical interpretation. However, it is certain that conversely already the chosen
organization contains a conscious or inconscious interpretation. In particular, it
can be due to the chosen organization that certain interpretations, despite being
possible in principle, are excluded (against the explicit aim of the analysis). One
can say even more: it seems not to be determined from the beginning what the facts
to be organized “are”, but rather, it is only due to the organizational principles
that certain facts are found (and, possibly, others are not despite “being there”)—
there is an idea inherent to each organizational principle what kind of facts (or
rather, answers to what kind of questions) should there be. Hence, the talk of an
“interpretation being possible in principle” withholds the answer how this “being
possible in principle” can be decided on when there is not even a way to say what
is to be interpreted without already interpreting. For discussions of this nontrivial
methodological problem, compare [Kragh 1987, 52] and [Haussmann 1991]. I try
to obviate it by at least making the organizational principles as explicit—and thus
inspectable—as possible and moreover to use as many different versions of these
principles as possible.

This means that the amorphous mass of facts is cut along various axes.
Organizing facts along the distinction of various possibly interacting scientific
communities yields one picture; organizing them according to the places of the
various concepts involved in a conceptual hierarchy yields another; and so on.

0.3.2 Communities

I make throughout this work use of the terminology developed by Kuhn20 (and
I think the reader is sufficiently aware of this terminology). One term specified
in a certain way in Kuhn’s philosophy is the term (scientific) community. In the
following lines, I will both outline an even more precise specification for use in the
case of mathematics and its subdisciplines, and point out how the differentiation

20Actually, Kuhn’s philosophy is important for the development of some of the central philo-
sophical theses of the present work.
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of a new community, independent in important respects, can be realized by the
historian.

0.3.2.1 What is a community?

The concept of scientific community has an entry in [Ritter 1971] vol.8 (p.1516);
according to this article, the modern use of the concept follows essentially Kuhn
who in turn was influenced by Gestalt psychology and the Łwow school. There is a
debate in epistemology of science concerning the question whether logic of science
is or is not reduced here to psychology of science; Kuhn later withdrew his original
notion of a community as an individual in large format whose transition to a new
paradigm runs much like a Gestalt switch.

I have the impression that in the present case one can largely identify a
mathematical community with the paradigm that keeps the community together
(which is a collection of concepts, theorems, methods of attack, open questions,
examples etc.). Certainly, the people involved can very well adhere to several such
paradigms, be it simultaneously or diachronically. But while Kuhn was interested
mainly in the phenomenon that the same group of persons can change their shared
opinions on certain things, I am more interested in the analysis of what holds
together a community, even in the case where a paradigm is in conflict with the
paradigms of other communities21. In this sense, the adherence of a person to
several paradigms is to be translated, in the diachronical case, into the statement
that the person in question ceases to belong to one community and enters another.

In saying “category theory”, for instance, one thinks of a certain subdiscipline
of mathematics, and this subdiscipline is developed by a corresponding community
who defines itself by the shared research interests related to this theory, and the
members of which are called “category theorists”. The borderlines of a community
may very well be fluid, and in the case of the category theorists, it is highly
probable that most of them are simultaneously something like “homology theorist”,
“algebraic topologist, resp. geometer”, “logician” and so on (i.e., belong to these
communities, too) or even that it is impossible or senseless to be only a category
theorist and nothing else. Nevertheless, it will, in the analysis of the debates on
the set-theoretical foundations of CT or of the attempts to make of CT itself a
foundation of mathematics, be perfectly legitimate (and useful) to speak of “the
category theorists” as opposed by the paradigm they share to, e.g., mainstream
set theorists or mainstream philosophers of mathematics.

0.3.2.2 How can one recognize a community?

To recognize a community, it is often not sufficient to take into account only
the published texts or, more precisely, the texts published by the community’s
members as “accredited” expositions of the results of their research. Certainly,

21In a terminology to be explained below, I think of a community as of a group of persons
developing a specific common sense on a technical level.
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the very fact that these texts have been regarded as deserving to be published
indicates that they are faithful records of the community’s research achievements,
and especially that they are what the community regards as important research
achievements. However, results and methods are known to (and discussed by)
the experts normally already before they are published, by means of meetings,
letters, conversations, talks, reports, preprints and so on. The existence of such
forms of communication has been important for the constitution of a functioning
community at least in the second half of the twentieth century, and records of
them allow the historian to reconstruct this constitution. In the present context,
examples are:

• correspondence by letters like the Grothendieck–Serre correspondence (3.3.1.1)
and the Eilenberg correspondence;

• indications that members of the community know the content of the work of
other members before it is published; for instance, Eilenberg and Mac Lane
read the book [Lefschetz 1942] in manuscript [1942a, 760], and Mac Lane
read [Eilenberg and Steenrod 1952] in manuscript (see [1950, 494]);

• nicknames for seminal work, like “FAC, GAGA, Tôhoku” as employed in
[Borel and Serre 1958];

• prefaces or appendices contributed by members of the community to works of
other members, like Eilenberg and Mac Lane in [Lefschetz 1942] or Steenrod
and Buchsbaum in [Cartan and Eilenberg 1956] (see n.171).

0.3.2.3 “Mainstream” mathematics

At several places in the present work, especially in chapter 6, a particular con-
flict between communities will be analyzed, namely the debate on questions of
foundations between set theorists and the “remaining” mathematicians. I consider
set theory (as well as mathematical logic) as a perfectly mathematical discipline,
due to the nature of the questions studied and the methods applied; the sceptical
attitude, resp. the indifference, exhibited by many representatives of the “classi-
cal” mathematical subdisciplines towards these fields suggests opposing set theory
and mathematical logic to a “mainstream” of mathematics (to which belong in
particular the fields where Grothendieck worked). This terminology is not new;
it can be found (analogously) for example in Church’s laudatio on Cohen at the
occasion of the presentation of the Fields Medal to the latter during the 1966 ICM
at Moscow.



Chapter 1

Prelude: Poincaré, Wittgenstein,
Peirce, and the use of concepts

The fact that categorial concepts are used despite the difficulties in giving them
satisfactory set-theoretical foundations leads to the idea of studying first of all
the use of these concepts, their pragmatic aspect. More specifically, workers in the
field seem not to ask whether the concepts are legitimate in the sense that they
refer to some objects which exist but whether they are used in a legitimate way.
We have to analyze, hence, what it means for a use to be legitimate.

This is a departure from traditional philosophy of mathematics with its focus
on the ontology of the objects, that means on the question of what the objects are.
In this traditional approach, epistemology (that means, the question of how we
have access to the objects) is seen as subordinate, derived. The idea is that only
things which exist (entities) can be used (in any sense of this term) legitimately,
such that we have to check first which things exist and which do not (but no
one tells us how this can be done, nor what it means). Constructivism as an
ontological position, for instance, is the claim that only those objects exist which
admit an effective construction (and since according to the traditional approach
to epistemology, only existence vouches for legitimate use, a constructivist in this
sense would say that only those objects which admit an effective construction can
be used legitimately).

My position is opposite: I think that we cannot know whether something
exists or not (here, I pretend to understand the term exist), that it is meaningless
to ask this. In this case, our analysis of the legitimacy of uses has to rest on
something else. I am kind of a constructivist insofar as I say that the mathematical
universe is constructed; but in saying this, I just want to stress that the things
constituting this universe were invariably introduced by human beings to be used
in certain contexts, to solve certain problems. The discipline mathematics took
shape since these things not only helped to solve those problems but at the same
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time gave rise to new problems. A scientific discipline is there because there are
problems to solve, after all. Correspondingly, my constructivism consists in saying
that every mathematical object is constructed as far as its historical origin is
concerned (even those which are excluded by classical, or, as I would prefer to
say, ontological, constructivists on the grounds that no effective construction is
available).

The statement that the mathematical universe is constructed is not meant
to be normative; I do not say: a thing has to be a construction in order to be part
of mathematics. I do not want to define what mathematics is (I think that it is
difficult to define this, but that we can know it nevertheless). I presuppose that
we know what mathematics is when asking the reader whether he or she agrees or
not with my tentative description of mathematics. I guess that this constructive
origin of the mathematical universe is important, that it influences our research
concerning this universe.

So let us try to grasp what it means for a use of a mathematical construction
to be legitimate. Preceding any philosophical analysis, scientists themselves have
criteria according to which a particular use is judged as legitimate or not. These
criteria as practiced are not formal throughout, but happen to be like Wittgen-
stein’s language games. The device of formal definition allows for unfolding of
such definitions but is not sufficient to make decisions on which results of unfold-
ing are reasonably taken into account. A concept is not given solely by its formal
explication, but comes equipped with an informal intention. In the epistemology
developed in this book, the capacity of unfolding concepts is stressed, not as some-
thing basic to human intellect, but to mathematical work. But the philosophically
interesting capacity is not that of unfolding concepts, but that of knowing when (in
which cases) to unfold. Some people say that formalism is not a plausible project
of a foundation (in the sense of explanation) of mathematics just because it tries
to rule out the intended meanings of the concepts involved; I want to present an
approach taking seriously these intended meanings.

To observe that there are informal criteria is not to abandon logical analysis of
concepts. One could have said in the case of the set-theoretical paradoxes, too: well,
that is not quite what I intended to do. But there, it would have been not honest
to say that! Namely, the concepts intervening in the set-theoretical paradoxes were
about what set theory was intended to grasp: applicability of concepts (or, more
explicitly, the relation between a concept and the things it applies to).

History of mathematics suggests that it is not quite reasonable to believe in
a base level where finally the most basic objects are reached which pose no more
problems in the resolution of which one is led to introduce new objects. Rather,
history might continue eternally in a parallel way. But in this case, the struggle of
philosophy to pick out the level which is most basic at a certain moment and to
make of it the eternal foundation would automatically be doomed to fail. Moreover,
even a “historical brand” of reductionism (a “provisional reductionism”) seems to
fail which has it that the worst that can happen is the coming about of a new level
on which the level formerly seen as basic turns out to depend. For as we will see,
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the notions of “basic” and “dependent” involved here are by no means in a simple
relation (they are not precisely opposite): we will encounter examples where the
“dependent” level still is more “basic” than the level on which it depends. This
sounds strange but will become clear later.

One possibility to avoid philosophy’s failure is by rather analyzing the process
of the addition of new levels itself. This type of philosophy will be searched for in
the present book. What can we reach by this kind of philosophy? When focussing
on the pragmatic aspect, can we hope to say more on the criteria according to
which a particular use is judged as legitimate or not than just which of the possible
uses are practiced? We will see.

1.1 A plea for philosophy of mathematics

1.1.1 The role of philosophy in historical research, and vice versa

The historical investigation of the development of a science is most needful, lest the
principles treasured up in it become a system of half-understood prescripts, or worse, a

system of prejudices. Historical investigation not only promotes the understanding of
what which now is, but also brings new possibilities before us, by showing that which

exists to be in great measure conventional and accidental. From the higher point of view
at which different paths of thought converge we may look about us with freer vision and

discover routes before unknown22 [Mach 1960, 316].

The subject matter of the present book is both historical and philosophical—
and so are the methods applied. In section 0.3, the historical part of the method-
ology is discussed, while the philosophical approach is developed in the remainder
of the present chapter. But first of all, I want to stress the need for having both
approaches simultaneously (as far as to put such a stress is already possible before
the historical data and the philosophical questions have been presented in more
detail). Generally speaking, the union of both a historical and a philosophical
analysis to a mixed one yields a mutual stimulation of both approaches. Only the
philosophical approach makes it possible to evaluate and interpret the results of
historical research, and only historical investigations give the point of departure
of the philosophical questions. The work is philosophical where it questions the
findings and historical where it takes note of the answers.

The concrete philosophical approach of the present work enters into an even
more intimate connection with historical methodology since mathematics has only

22“Die historische Untersuchung des Entwicklungsganges einer Wissenschaft ist sehr notwen-
dig, wenn die aufgespeicherten Sätze nicht allmählich zu einem System von halb verstandenen
Rezepten oder gar zu einem System von Vorurteilen werden sollen. Die historische Untersu-
chung fördert nicht nur das Verständnis des Vorhandenen, sondern legt auch die Möglichkeit
des Neuen nahe, indem sich das Vorhandene eben teilweise als konventionell und zufällig er-
weist. Von einem höheren Standpunkt aus, zu dem man auf verschiedenen Wegen gelangt ist,
kann man mit freierem Blick ausschauen und noch heute neue Wege erkennen”. [Mach 1883,
251], cited from [Janik and Toulmin 1998, 166f].
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a history exceeding a pure chronology of results when the acts constituting it, for
instance the modifications of the conceptual framework, are taken into account.
The stress on the historicity of acts is not to be understood solely in the obvious
sense that the activity of those who acted was necessary for the final “building”
of the science to come into being; I am convinced, moreover, that mathematics
cannot be understood satisfactorily as a building of “eternal truths”, but is rather
subject to a continuous transformation of its conceptual framework.

Hence, one can perhaps really have confidence in Ernst Mach’s vision and
credit historical investigation of mathematics with an effect of revitalization. [Ep-
ple 2000, 141] says that history of mathematics is, just as any other historical
discipline, a contribution to the “communication of the present to which the his-
torian belongs with itself”.

A philosophical reflection of a science can perform such a revitalizing func-
tion only if it is neither pretheoretical nor posttheoretical, that means if it tries
neither to determine dogmatically the development of the science beforehand nor
to wait for the end of times in order to submit the science in its “definitive” state
to a conclusive interpretation. Actually, a revitalization by philosophy would be
possible only through an interaction (transforming both science and philosophy)
during the development of the science. Such an interaction is often an illusion;
however, avoiding the two extremes can still be a methodological maxime of phi-
losophy of science; and in order to avoid the second one, a historical approach is
obviously “most needful”. Poincaré [1908a, 148] (advancing his criticism of the aims
of logical analysis) holds that an understanding of a science cannot be obtained
only by an analysis of the corpus of knowledge thought of as being accomplished
if understanding includes also the possibility of revitalization23. This approach
relates history (to understand a course) and philosophy (to understand a piece
of knowledge in its justifiedness). The claim is that the understanding of a prin-
ciple of knowledge acquisition flows from the understanding of the progress of
knowledge24—as manifest in the transformation of concepts—, while the reduc-
tion of knowledge to basic insights, because it is retrograde, is not very likely to
participate in the promotion of new knowledge.

This means in particular that philosophical questions are to be asked anew
for each stage of historical development of a discipline, and that the respective
answers have to be compared with each other25. I think that historization of
philosophical positions is the good way of doing philosophy of science. To sum up:
the interaction of historical research and philosophical interpretation is intentional
in the present work; I do consciously avoid a decision about what I am doing here;
rather, I distinguish when doing which of the two.

There is an important remark to be made here. The fact that CT belongs

23I come back in 1.2.2.2 to philosophy’s task of understanding.
24“progress” signifying here only a temporal change, not a judgement on the value of the

different states of knowledge. In particular, I am aware of the phenomenon that knowledge is
lost during the “progress of knowledge”.

25See also Cavaillès’ position, as presented in [Heinzmann 1998a, 100].
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to the mathematical disciplines of the present26 may very well make it difficult
to control whether there occur prohibited backwards projections in the analysis.
But instead of giving up the whole enterprise by saying that it is “too early” for a
history of CT, I hold that now a history of CT can only be a philosophy of CT.
Positively, there might be a real chance of an interaction in this case.

Hao Wang proposes a similar connection between philosophy and history in
[1971] when discussing the question “What is mathematics”. To do more justice to
this question than the traditional research in foundations of mathematics can do
according to him27, Wang develops the idea of an “abstract history”:

The principal source of detachment of mathematics from mathematical
logic is that logic jumps more quickly to the more general situation. This
implies a neglect of mathematics as a human activity [ . . . ] It is philosophically
attractive to study in one sweep all sets, but in mathematics we are primarily
interested in only a very small range of sets. In a deeper sense, what is more
basic is not the concept of set but rather the existing body of mathematics.
[ . . . ] Rightly or wrongly, one wishes for a type of foundational studies which
would have deeper and more beneficial effects on pedagogy and research in
mathematics and the sciences.

#1As a first step, one might envisage an “abstract history” of mathematics
that is less concerned with historical details than conceptual landmarks. This
might lead to a resolution of the dilemma between too much fragmentation
and too quick a transfer to the most general [Wang 1971, 57].

Wang models this by some examples from the “existing body of mathematics”
neglected, according to him, by “specialists in foundational studies”. Apparently,
my project relates philosophy and historical research to accomplish—in a more
restricted context—a task similar to Wang’s. On the other hand, it is a con-
tentious issue whether methodologically these tasks can be accomplished by being
“less concerned with historical details than conceptual landmarks”. Wang wants
foundational studies to have “deeper and more beneficial effects on pedagogy and
research in mathematics and the sciences”. Lawvere speaks more explicitly about
“guide-lines [ . . . ] which directions of research are likely to be relevant” as a possi-
ble contribution of foundations (7.2.3). For historiography of science, the problem
of prediction is discussed by [Kragh 1987].

The interplay of philosophy and history of mathematics is complicated. Some-
times, historical events serve as test cases for concepts of philosophy of mathemat-
ics (or such concepts are developed in relation to the event); sometimes philo-
sophical concepts serve the historian as tools for the interpretation of a historical
event. I repeat that I do not intend in the present study to employ CT as a test
case lending support to some position in philosophy of mathematics (this may
be tried elsewhere); rather, I am looking for philosophical methods helpful in the
understanding of CT and the debates related to it.

26This is not meant to suggest that there had been no substantial changes to mathematics as
a scientific activity since the emergence of CT; see 0.1.1 here.

27Part of his criticism is discussed in section 1.3.1.3.
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1.1.2 The debate on the relevance of research in foundations of math-
ematics

While the debate on foundations at the beginning of the twentieth century was
marked by the clash of different competing approaches, the debate in the second
half of the century took an entirely different shape—it concerned namely first of
all the question of whether the search for foundations is relevant at all.

Sociologically, this debate might be considered as a conflict between the large
group of (most) “working mathematicians” on the one hand (these are per defini-
tionem28 those in whose work—and often also in whose perspective—foundational
problems simply do not occur) and the much smaller group of (most)29 philoso-
phers of mathematics on the other hand.

The latter group probably became represented on the institutional level only
with the foundational debates of the late 19th and early 20th century and always
fell somewhat between the two stools of mathematics and traditional philosophy;
hence, sociology has a partial explanation of the sketched conflict ready at hand,
namely that this small group had to go on in its struggle for institutionally mani-
fested relevance. What is less simply explained, however, is the indifference exhib-
ited by large parts of the mathematical community towards the work of philoso-
phers of mathematics. In the present analysis, it will turn out that what caused
this indifference is not so much the questions occupying philosophers in general but
rather their specific approach (starting with their peculiar way of stating the ques-
tions); this approach has been considered as not appropriate to produce relevant
results. On the positive side, I hope that my proposal of a methodological change
will be able both to find some adherents among philosophers of mathematics and
to convince some mainstream mathematicians of the relevance of philosophical
analysis.

Kreisel’s paper [1970] can be read as a complaint about a lack of interest of
mainstream mathematicians in logical analysis. He attacks “the wide spread, but
false belief that mathematical logic is somehow tied to, or that it even supports
the formalist doctrine [ . . . ] and that the principal aim of mathematical logic is
to tidy up formal details” (p.17); The formalist(-positivist) doctrine mentioned as-
serts that “only formally defined notions and therefore only explanations in formal
terms are precise”. Kreisel is convinced that this doctrine is widely accepted and
calls this a “cult of (intellectual) impotence by telling us that natural questions are
senseless, often when sensible answers are already available” [1970, 19]. This pes-

28The expression “working mathematician” stems from [Hardy 1967, 61, 143]; [Mathias 1992, 7
n.16] credits Bourbaki with this “odious phrase” ; what is certain is that Bourbaki transported the
phrase and the corresponding point of view. [Mehrtens 1990, 159] defines the complementary type
of researcher, the “not working mathematician”, as those who work on foundations or philosophy
of mathematics; they are mathematically trained (and in this sense mathematicians), but they do
not work on “actual” mathematics. Those who label themselves “working” might very well tend
to disparage the group of “not working mathematicians”. Compare my (hopefully more neutral)
terminology of mainstream mathematics as presented in 0.3.2.3.

29A well-known exception is Putnam; see [1967].
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simistic view may have been justified at a certain time30; I have the impression,
however, that mathematicians nowadays are absolutely not hostile to a philosoph-
ical discussion of their discipline. My book aims at offering them a piece of such
discussion which by the choice of the mathematical matters discussed hopefully
is not considered as irrelevant to actual mathematical research31. Moreover, in-
stead of searching for eternal explanations, I propose a more flexible manner of
philosophical interpretation (see also 7.1.2).

1.2 Using concepts

1.2.1 Formal definitions and language games

1.2.1.1 Correct use and reasonable use

Wittgenstein’s insight, doubtlessly hard to digest for mathematicians, is that the
use of concepts is not completely governed by formal rules. In some cases, no such
rules can be given. Let us use the following shorthand in these cases: the use is
then governed by “informal rules”. To be sure: such “rules” cannot be formulated.
But one can learn to respect them in use. Without the postulation of such a
type of rules of use—Wittgenstein coined the term “language game”—language as
empirically given apparently cannot be described faithfully.

Accordingly, I distinguish two kinds of “right” use of a concept, each one
characterized by the type of the respected rules.

• Formal rules concern the question whether the use to be made would really
be an instantiation or actualization of the corresponding scheme, would be-
long to the extension of what is explicated in the scheme. The formal rules
are compiled in the mathematical definition of the concept. When they are
respected, I shall speak of a correct use. Whether they are respected can in
principle be checked at every moment by the application of an algorithm (un-
folding of the concept)32. Note that I do not speak about formal languages
in any strict sense, let alone about recursive definitions or something of that
ilk.

• Informal rules concern the intention of the concept, the language game, and
control whether the employment is an intended one. When they are respected,
I shall speak of a reasonable use.

The difference stressed by Wittgenstein concerns the ways one can learn the
rules of the respective types. Formal rules can be written down in some manner,

30It is reasonable to suppose that Kreisel thought of Bourbaki’s dictum about the “pseudo-
problems” (see 5.3.1.1).

31Famous books like [Davis and Hersh 1980] and [Mac Lane 1986a] had similar motivations
but addressed them certainly in a very different manner (and from very different philosophical
positions).

32For some discussion of our ability to apply formal rules, compare [Kreisel 1970, 22].
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and while it is possible to internalize them by training, it suffices in principle to
read up on them at each occurence in order to apply them. Informal rules cannot
be written down, have to be “rehearsed” patiently. Nevertheless, they can be used.
Members of a community of speakers trained for this use can check whether the
contribution of a speaker conforms to the rules, not by formulating the rules (which
is impossible), but by applying them themselves and checking whether the same
result is obtained. In this sense, one can speak of rules, since it is possible to check
whether they are respected or not. Wittgenstein’s own discussion runs thus:

One might say that the concept ‘game’ is a concept with blurred edges.—
“But is a blurred concept a concept at all?” [ . . . ] Frege compares a concept
to an area and says that an area with vague boudaries cannot be called
an area at all. This presumably means that we cannot do anything with
it.—But is it senseless to say: “Stand roughly there”? [ . . . ] And this is just
how one might explain to someone what a game is. One gives examples and
intends them to be taken in a particular way.—I do not, however, mean by
this that he is supposed to see in those examples that common thing which
I—for some reason—was unable to express; but that he is now to employ
those examples in a particular way. Here giving examples is not an indirect
means of explaining—in default of a better. For any general definition can be
misunderstood too33 [Wittgenstein 1958, I §71].

When emphasizing language games which complete the formal definitions of con-
cepts, I choose to replace the Hilbert–Kreisel distinction between formal and in-
formal (inhaltlich—that is, “related to content”34), a distinction similar to the one
between syntax and semantics) by an approach focussing on pragmatics.

Informal rules are more important in mathematics than it may seem at first
glance. Indeed, mathematicians working with a concept often consider some in-
stances of this concept (where the formal definition is perfectly applicable) as
“pathological”; they have the feeling that the “real” intention of the concept has
somehow been missed in applying it thus. The criterion according to which this
intention has been missed is available only in the form of a language game: one
has learned to distinguish the kind of cases to which the concept can reasonably
be applied, and observes that the case where the pathologic thing is constructed
does not belong to them. Hence, the possibility to construct pathologies indicates

33“Man kann sagen, der Begriff ‘Spiel’ ist ein Begriff mit verschwommenen Rändern. — “Aber
ist ein verschwommener Begriff überhaupt ein Begriff?” [ . . . ] Frege vergleicht den Begriff mit
einem Bezirk und sagt: einen unklar begrenzten Bezirk könne man überhaupt keinen Bezirk
nennen. Das heißt wohl, wir können mit ihm nichts anfangen. — Aber ist es sinnlos zu sagen:
“Halte Dich ungefähr hier auf!”? [ . . . ] Und gerade so erklärt man etwa, was ein Spiel ist. Man
gibt Beispiele und will, daß sie in einem gewissen Sinn verstanden werden. — Aber mit diesem
Ausdruck meine ich nicht: er solle nun in diesen Beispielen das Gemeinsame sehen, welches
ich — aus irgend einem Grunde — nicht aussprechen konnte. Sondern: er solle diese Beispiele
nun in bestimmter Weise verwenden. Das Exemplifizieren ist hier nicht ein indirektes Mittel der
Erklärung, — in Ermangelung eines Bessern. Denn, mißverstanden kann auch jede allgemeine
Erklärung werden”.

34See notes 67 (Kreisel) and 485 (Hilbert).
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that the “really valid” definition of the concept is not the formal one but given by
a language game.

Haken in his paper on controversial questions about mathematics [1980] asks:

Question 3 Isn’t it, at least in principle, possible to find the correct answer
to every question in pure mathematics, i.e., is every true theorem provable?

[ . . . ] This question never was controversial, since before 1930 every expert
was convinced that the correct answer was ‘yes’, but the correct answer was
proved to be ‘no’ by Gödel [ . . . ]. But still we may ask

Question 3a Aren’t the true but not provable theorems rare exceptions?
and isn’t every ‘simple and natural’ true theorem provable in an elegant way?

From the last part of the question concerning elegance, Haken was led to discuss
proofs which need thousands of pages, and computer-aided proofs. So he does not
discuss the controversy which would be the central one contained in his question if
the last four words had been omitted: isn’t every ‘simple and natural’ true theorem
provable? or, as I would like to put it, aren’t all counterexamples to ‘simple and
natural’ theorems just pathologies?

1.2.1.2 The learning of informal application rules

Now, how are informal rules, language games specified? According to Wittgenstein,
as is clear from the above citation, one can learn the reasonable use of concepts like
“game” only by exemplification; he speaks also somewhat curtly about “Abrichten”
(the German term for the training of animals). There is no other possibility to
acquire the ability to respect the informal rules of use (and to check whether they
are actually respected). This is not the case with formal rules where an algorithm
is available.

But to acquire this ability is indispensable. It is true that in the case of
mathematical concepts the correct use is in principle guaranteed if one respects
strictly the formal definition; however, not all meaningful uses are interesting uses.
What is thought of here is not the distinction between well-formed (syntactically
correct) and semantically meaningful expressions, but a choice of uses emphasized
as particularly “interesting” among semantically meaningful uses. While the former
distinction concerns the relation between syntax and semantics, the latter concerns
pragmatics. A mathematical concept is always a pair of two mutually dependent
things: a formal definition on the one hand and an intention on the other hand.
He or she who knows the intention of a concept has a kind of “nose” guiding the
“right” use of the formal concept. In this respect, mathematicians say often that
one has to acquire an “intuition” of the concept35; the student will be said to have
“really” grasped the use of the concept only after having acquired this intuition. It
is typically composed of various parts—like a catalogue of “important” or “fruitful”
examples; short (informal) outlines of the content of the concept; typical situations

35The epistemological reflections to be undertaken will heavily make use of the idea that
“intuition” can very well be something that depends on one’s expert knowledge.
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where and typical ways in which the concept is “usually” applied; occasionally also
spatial illustrations. To sum up: one learns the use of a concept just like in a
language game.

For example, the concept of category is hardly presented to beginners other-
wise than giving lots of examples36. This implies actually that the student should
already know a certain number of other concepts of structural mathematics (giv-
ing rise to examples of categories); to have already a certain knowledge can be
a necessary condition to grasp the use of a concept. We shall see later that this
observation is quite important. Already the following quotation from Peter Freyd
shows that such considerations are vital in our context:

If topology were publicly defined as the study of families of sets closed
under finite intersection and infinite unions a serious disservice would be per-
petrated on embryonic students of topology. The mathematic correctness of
such a definition reveals nothing about topology except that its basic axioms
can be made quite simple. And with category theory we are confronted with
the same pedagogical problem. The basic axioms [ . . . ] are much too simple.

A better (albeit not perfect) description of topology is that it is the study
of continuous maps; and category theory is likewise better described as the
theory of functors [Freyd 1964, 1].

(Note how he switches from “definition” to “description” when “mathematic cor-
rectness” stays no longer put.)

1.2.1.3 The interaction between a concept and its intended uses

The relation between a concept and its intended use is not static but has a history.
The “canon” of reasonable uses can be extended in the course of history, and often
it is the one who points to a particularly innovative (originally not intended) use
who is awarded the most credit with the further development of a concept (an
example will be discussed in 3.3.2.3). Hence, conceptual innovation is manifest in
different forms:

• introduction of new concepts;

• transfer of established concepts in new perspectives of use;

• adaptation of established concepts to their intended or new use (made pos-
sible by conceptual analysis);

• adaptation of perspectives of use to the possibilities of a concept recognized
in testing it.

This possibility to produce “surprise” flows from the difference between explication
and explicandum. The original intention of the concept is its explicandum. The
extension of the explication found by and by is obviously not automatically the

36Eilenberg and Mac Lane in their seminal paper asserted that “the subject matter of this
paper is best explained by an example” [1945, 231].
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extension of the explicandum. If there are great differences, we will say that the
explication failed. But if there are just some subtle ones, we will perhaps rather say
that we learned something about the explicandum through the formal treatment.

1.2.2 How we make choices

1.2.2.1 The term “theory” and the criterion problem

The listing of the different possible transformations of concepts in 1.2.1.3 leaves
open how one actually decides what concepts to form and how to transform them
(i.e., what are the criteria to choose the “reasonable” uses among the “correct”
uses). I will subsume problems of this type under the label “criterion problem”.
According to 1.2.1.1, these criteria cannot at any rate be formal ones.

We have to discuss the criterion problem since we want to analyze the his-
torical development of a theory. It is to be noted first that the term “theory” is
used in (talk about) mathematics in different manners:

• in naive use, the term denotes most often a collection of results and meth-
ods around a certain concept (examples: number theory, group theory, knot
theory, game theory, proof theory . . . ).

• a particular mathematical subdiscipline, namely proof theory, provides a ten-
tative explication of the concept of theory: a theory is the totality of propo-
sitions that can be deduced from certain axioms by certain deductive means
(“deductive hull”). The motivation of this explication comes from the problem
of consistency (which amounts to the question whether one can deduce too
much).

Besides the particular purpose served by this explication of the concept of theory,
it is certainly not a successful explication of the term “(mathematical) theory”
as it is commonly used. For instance, group theory in the usage of mathemati-
cians is not given by taking the axioms for a group and a first-order logic and
deducing straight ahead (or checking the deductive hull by more sophisticated
proof-theoretical means). Mathematicians rather mean by group theory the in-
vestigation of particular constructions or models, for example with the aim of a
classification (or enumeration) of groups37. Hence, the term theory in the math-
ematicians’ usage denotes a corpus of knowledge and methods around a basic
concept; and the methods, in particular, are completely stripped off when the
theory in the proof-theoretical sense is studied. Here, the criterion problem is to
choose relevant parts of a theory. Let me repeat that one should not think here
of the distinction between well-formed (syntactically correct) and semantically
meaningful expressions, but of a choice of propositions particularly emphasized as
“interesting” among the semantically meaningful. As Poincaré puts it: “The man
of science must work with method. Science is built up of facts, as a house is built

37See also section 5.3.2.2.
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of stones; but an accumulation of facts is no more a science than a heap of stones
is a house38” [Poincaré 1905b, 141]. (The translation “work with method” for “or-
donner” is not satisfactory; the idea is that the man of science has to carry out
an ordering of the facts. Now, ordering certainly is not to be confounded with
choosing, but experience tells us that there are not many fields in which we can
have complete orderings39, so ordering often implies choosing.)

What is more, the aim of proof theory to gain insights in consistency is only
ostensibly an indispensable part of the justification of a theory. CT is not the
only theory in history which, despite its consistency being questionable40, was
not abandoned but employed because it seemed appropriate to lead to progress in
research. In this second criterion problem (the problem on which grounds to accept
theories), the criterion of consistency is thus not decisive; there must be another
criterion. In this case, the choice of “reasonable” theories is not necessarily made
among the “correct” (and that means here: the admissible) ones, since in most
cases we do not know whether the theory is consistent (and this state of affairs
might be the principal reason for the lack of interest in consistency).

A third criterion problem concerns the observation that in mathematical
discourse, certain employments of a concept are distinguished as the “reasonable”
ones (see 1.2.1.1). The same is true for the conceptual extensions (definitions)
undertaken during the development of a theory: to paraphrase Poincaré, a theory
is a conceptual system, not a “heap” of concepts. Therefore, the writing of the
history of a theory cannot be limited to an assembling of information concerning
the first definitions of different concepts, but has to point out the stepwise creation
of a net of (mutually related) concepts.

Criterion problems are also discussed by other authors, for example by Hao
Wang 〈#2 p.26〉 or Gerd Heinz Müller 〈#42 p.300〉.

Already at this stage of the methodological discussion, the question comes to
one’s mind what is the relation of such criterion problems to epistemological ques-
tions. Does one take such decisions by an insight? This would mean to “ennoble”
something which looks rather contingent at first glance. Since we are concerned
with the despite-question, the consideration of criterion problems will be crucial
for our enterprise.

38“Le savant doit ordonner ; on fait la science avec des faits comme une maison avec des
pierres ; mais une accumulation de faits n’est pas plus une science qu’un tas de pierres n’est une
maison”. [Poincaré 1968, 158]

39The terms field and ordering are not to be taken in any mathematical sense, of course.
40Even in the domain of formal logic, there were many “interesting” systems that proved to

be inconsistent: “Inconsistencies [ . . . ] frequently occur in early versions of interesting formal
systems: Frege’s set theory, Church’s ‘set of postulates’, Martin-Löf’s type theory were all incon-
sistent” [Longo 1988, 94]. (For Church’s ‘set of postulates’, see [Church 1932]; for its inconsistency,
see [Church 1956, 201].)
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1.2.2.2 The task of the philosopher, described by Poincaré and others

Poincaré in Science et méthode discusses how “reasonable” axioms (theories) are
chosen. In a section which is intended to cool down the expectations put in the
“logistic” project, he points out the problem as follows:

Even admitting that it has been established that all theorems can be de-
duced by purely analytical processes, by simple logical combinations of a finite
number of axioms, and that these axioms are nothing but conventions, the
philosopher would still retain the right to seek the origin of these conventions,
and to ask why they were judged preferable to the contrary conventions.

[ . . . ] A selection must be made out of all the constructions that can
be combined with the materials furnished by logic. the true geometrician
makes this decision judiciously, because he is guided by a sure instinct, or by
some vague consciousness of I know not what profounder and more hidden
geometry, which alone gives a value to the constructed edifice41 [Poincaré
1908a, 148].

Hence, Poincaré sees the task of the philosophers to be the explanation of how
conventions came to be. At the end of the quotation, Poincaré tries to give such
an explanation, namely in referring to an “instinct” (in the sequel, he mentions
briefly that one can obviously ask where such an instinct comes from, but he gives
no answer to this question). The pragmatist position to be developed will lead to
an essentially similar, but more complete and clear point of view.

According to Poincaré’s definition, the task of the philosopher starts where
that of the mathematician ends: for a mathematician, a result is right if he or she
has a proof, that means, if the result can be logically deduced from the axioms;
that one has to adopt some axioms is seen as a necessary evil, and one perhaps
puts some energy in the project to minimize the number of axioms (this might
have been how set theory become thought of as a foundation of mathematics).
A philosopher, however, wants to understand why exactly these axioms and no
other were chosen42. In particular, the philosopher is concerned with the question
whether the chosen axioms actually grasp the intended model. This question is
justified since formal definitions are not automatically sufficient to grasp the inten-
tion of a concept (see 1.2.1.1); at the same time, the question is methodologically
very hard, since ultimately a concept is available in mathematical proof only by a
formal explication. At any rate, it becomes clear that the task of the philosopher
is related to a criterion problem.

41“Admettons même que l’on ait établi que tous les théorèmes peuvent se déduire par des
procédés purement analytiques, par de simples combinaisons logiques d’un nombre fini d’axiomes,
et que ces axiomes ne sont que des conventions. Le philosophe conserverait le droit de rechercher
les origines de ces conventions, de voir pourquoi elles ont été jugées préférables aux conventions
contraires.

[ . . . ] Parmi toutes les constructions que l’on peut combiner avec les matériaux fournis par
la logique, il faut faire un choix ; le vrai géomètre fait ce choix judicieusement parce qu’il est
guidé par un sûr instinct, ou par quelque vague conscience de je ne sais quelle géométrie plus
profonde, et plus cachée, qui seule fait le prix de l’édifice construit” [Poincaré 1908b, 158].

42Poincaré’s stressing of this kind of understanding is discussed in [Heinzmann 1998b].
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Kreisel thinks that we do indeed have the capacity to decide whether a given
model was intended or not:

many formal independence proofs consist in the construction of models
which we recognize to be different from the intended notion. It is a fact of
experience that one can be honest about such matters! When we are shown
a ‘non-standard’ model we can honestly say that it was not intended. [ . . . ]
If it so happens that the intended notion is not formally definable this may
be a useful thing to know about the notion, but it does not cast doubt on its
objectivity [Kreisel 1970, 25].

Poincaré could not yet know (but he was experienced enough a mathematician to
“feel”) that axiom systems quite often fail to grasp the intended model; Kreisel’s
comment rests on more recent results in this direction (see also section 1.2.3.2 be-
low). It was seldom the work of professional philosophers and often the byproduct
of the actual mathematical work to point out such discrepancies.

Following Kant, one defines the task of epistemology thus: to determine the
conditions of the possibility of the cognition of objects. Now, what is meant by
“cognition of objects”? It is meant that we have an insight into (the truth of)
propositions about the objects (we can then speak about the propositions as
facts); and epistemology asks what are the conditions for the possibility of such
an insight. Hence, epistemology is not concerned with what objects are (ontol-
ogy), but with what (and how) we can know about them (ways of access). This
notwithstanding, both things are intimately related, especially, as we shall see,
in the Peircean stream of pragmatist philosophy. The 19th century (in particular
Helmholtz) stressed against Kant the importance of physiological conditions for
this access to objects. Nevertheless, epistemology is concerned with logic and not
with the brain. Pragmatism puts the accent on the means of cognition—to which
also the brain belongs.

Kant in his epistemology stressed that the object depends on the subject, or,
more precisely, that the cognition of an object depends on the means of cognition
used by the subject [Lutz 1995, 669]. For him, the decisive means of cognition
was reason; thus, his epistemology was to a large degree critique of reason. Other
philosophers disagreed about this special role of reason but shared the view that
the task of philosophy is to criticise the means of cognition. For all of them,
philosophy has to point out about what we can speak “legitimately” (that means
here: what kind of statement withstands the criticism). Such a critical approach is
implicitly contained in Poincaré’s description of the task of the philosopher; in later
sections, we will have reason to discuss in some detail the particular viewpoints of
Willard Van Orman Quine and Charles Sanders Peirce.

Reichenbach decomposes the task of epistemology into different parts: guid-
ing, justification and limitation of cognition.

While justification is usually considered as the most important of the three
aspects, the “task of the philosopher” as specified above following Poincaré is not
limited to it. Indeed, the question why just certain axioms and no others were
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chosen is obviously a question concerning the guiding principles of cognition43:
which criteria are at work? Mathematics presents itself at its various historical
stages as the result of a series of decisions on questions of the kind “Which objects
should we consider? Which definitions should we make? Which theorems should we
try to prove?” etc.—for short: instances of the “criterion problem”. epistemology, in
my opinion, has above all the task to evoke these criteria—used but not evoked by
the researchers themselves. For after all, these criteria cannot be without effect on
the conditions for the possibility of cognition of the objects which one has decided
to consider. (In turn, the conditions for this possibility in general determine the
range of objects from which one has to choose.) However, such an epistemology has
not the task to resolve the criterion problem normatively (that means to prescribe
for the scientist which choices he has to make).

1.2.2.3 The role of applications

To sum up the discussion about the choice of relevant parts of a theory: one has
the impression that a theory, once formalised and transferred to the syntactical
level, becomes an expressive and deductive framework which at first glance is dis-
posed to yield a quite amorphous mass of conceptual and propositional extensions,
some of which are later emphasized, while others are dropped or not even made.
The historical findings (the theory as it has actually grown) are thought of as the
result of a series of such choices. It is to be stressed, first of all, that the historian
will have to distrust the belated impression that there has been made a choice out
of an amorphous mass. He will have to ask whether the mathematicians devel-
oping a theory (i.e., making the distinctions) had really this idea of a, so to say,
virgin material or whether they arrived rather at a theory containing certain dis-
tinctions precisely because they wanted to make these distinctions. This amounts
to a slightly different criterion problem: why did they want to make just these
distinctions?

It is not difficult to advance a reasonable hypothesis concerning this problem.
What counts is the interplay with applications; in order to understand (histori-
cally) the “choice”, one has to investigate the contexts of application where the
choice was made. The specific treatment of a thing as object (i.e., the distinction
of certain propositions concerning the thing) is determined largely by the tasks
the thing is intended to accomplish as a tool.

However, the original contexts of application cannot give the whole answer,
for only the theory’s capacity to be developed “on its own”, in separation from the

43In stressing the aspect of cognition guiding, I agree with different authors who underline
the heuristic function of foundational research, for example Wang 〈#1 p.5〉, Lawvere (7.2.3),
Bénabou 〈#35 p.297〉 and implicitly also Wittgenstein: “A Wittgensteinian spirit reproaches a
set-theoretical foundation for not providing any tie between the definition of the axioms and the
activities leading to the choice of its model (Un esprit wittgensteinien reproche à un fondement
ensembliste [ . . . ] de ne procurer aucun lien entre la définition des axiomes et les activités
conduisant au choix de son modèle)” [Heinzmann 1997]. Also Mach’s plea for historical research,
reproduced and discussed in 1.1.1, can be understood this way.
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original applications, makes it applicable in other contexts not determined from
the very beginning. As [Quine 1958, 8] puts it:

The usefulness of a theory is not to be measured solely in terms of the
application of prefabricated techniques to preformulated problems; we must
allow the applicational needs themselves, rather, to play their part in motivat-
ing further elaborations of theory. The history of mathematics has consisted
to an important degree in such give and take between theory and application.

In the case of many concepts of CT, the inspection of the original context of ap-
plication is not sufficient to explain the relevance the concept did adopt later;
an amazing example is the concept of adjoint functor44. It is rather by the in-
terplay between the development of the theory itself and the development of its
applications that both take their respective form: the desired applications suggest
which propositions one should try to prove (because their proof would allow for
these applications); the deductive extension of the concept helps to estimate in
which fields of application an employment of the concept should be tried (because
one has more points of contact than the mere observation that certain things fall
under the concept). Hence, the state of one of the two directions of development
works as guiding principle for the development of the other; there is, so to say,
a mutual guiding. Put together, it seems reasonable to inspect the interaction of
CT with one of its fields of application under two cuts: on the one hand, how was
the field of application transformed by it (for example, the concept of free object
is now expressed in a categorial manner—see 2.4.3); on the other hand, how did
CT develop through this application (for example, what kinds of categories are to
be distinguished if one aims at fixing where one can speak of the concept of exact
sequence—see 3.1.2.1)?

One aspect of the use of concepts is that they can be used as “auxiliary”
concepts or in a more “essential” manner. This distinction occurs frequently in
texts containing a reflection about conceptual progress in CT, and it is clearly a
distinction with an epistemological content. Actually, the distinction is related to
the choices one made.

1.2.3 Uses as tool and uses as object

1.2.3.1 Problem solving, conceptual clarification and “splitting off”

By a “mathematical working situation”, I mean a configuration45 of concepts, meth-
ods, problems, results underlying a concrete case of mathematical acting (operat-
ing). Here, “method”, “problem”, “result” are intended to designate which function
the things called “method”, “problem” or “result” perform in the action considered:
this action will typically start with the statement of a problem and try to get a
result in applying a method. Certainly, these things can change their roles; for

44See especially section 5.2.3.
45See Epple’s “epistemic configurations (epistemische Konfigurationen)” [2000, 150].
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example, a method can become itself the object of an investigation (i.e., a kind
of problem). Accordingly, the use of the term “concept” is ambiguous (and more
neutral as to the function the thing to which the term is applied performs in an
action): a thing being called a mathematical concept can be equally well a tool
for the understanding of a problem (i.e., it can serve for conceiving, grasping a
matter of fact) or itself an object of an investigation. Hence, concepts belong both
to the problems and to the methods; sometimes, a concept might even be a result.
To summarize, I stick here (in agreement with the usual employment of the term
in the informal discourse of mathematicians) to a not completely explicated use
of the term “concept”46.

In what precedes, an observation (concerning the pragmatics, not the seman-
tics of a piece of language) was made which, simple as it might be, nevertheless
is of crucial importance for the epistemological considerations to follow: a mathe-
matical object can, in different working situations, perform different functions: it
can be an object of investigation or a tool for the investigation of other objects.
This depends on the perspective of those actually dealing with the object. The
tool/object dualism is a basic dualism between two types of use (constitution) of
given things: a thing can be used as an object or as a tool. For example, if you use
your glasses as a tool, you look through them (you do not see them), but if you
use them as an object (perhaps because they have to be cleaned or something the
like), you regard them (but you do not “use” them in the way they are intended
to be used, i.e., as a tool). For instance, both types of use have been present in
the history of category theory (it was this observation which gave the book its
title): CT was used as a tool in mathematical applications, and was the object of
philosophical debate.

To avoid confusion in the discussion to follow, a terminological remark is at
hand. It would be quite embarrassing to use a term as current in normal philosoph-
ical discourse as “object” in all this discussion exclusively in this qualified sense,
i.e., only in the combination “used as” and, in this respect, opposed to “tool”.
Hence, I will speak of objects and this will not always imply that these objects
are used as objects by someone. What we intend to do, after all, is to analyze the
uses scientists make of concepts in particular working situations. Now, when we
are doing that, our object (in the qualified sense: object of investigation) are these
uses, and we will not be prohibited from speaking about the objects they are uses
of, disregarding whether these objects actually are used as objects or as tools. We
still call them objects, even if they happen to be used as objects neither by the
scientists nor by ourselves (since we “use” their uses as objects).

A working situation can be seen under the perspective of “problem solving”
or rather under that of “conceptual clarification” (or clarification of methods).
Questions of conceptual clarification are problems, too; questions considered as

46“ ‘concept’ is a vague concept (‘Begriff’ ist ein vager Begriff)”; [Wittgenstein 1956] V-49. By
the way, in the original German version of this book, I made some effort to distinguish between
“Konzept” and “Begriff”, a distinction to be drawn in German philosophical language but difficult
to imitate in English.
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the most urgent open problems of a science at one moment in time may very
well have been considered earlier as mere questions of conceptual clarification,
as belonging to a kind of meta-level. Hence, one has to ask: what is regarded as
object-like, what as tool-like in the situation considered by the historian? This can
vary inside a community47. In what follows, I will use throughout a terminology
derived from this developmental picture of conceptual hierarchy: I will say that a
concept is used as a tool on one level and as an object on the “next” level.

The methods for the problems of today provide the problems of tomorrow48.
With the first solution of a problem49, the problem is solved and no longer bothers
the one who was simply concerned with finding a solution; whoever is rather
“conceptually oriented” is interested in the clarity of the solution (and he or she
wants to improve this clarity by analysis of the concepts involved and eventually
by the introduction of new concepts). A solution appears to be “complicated”
(unclear, elaborate, tedious) when there is no formulation of the solution in usual
terms that could be called simple, lucid and the like. This motivates the “search
for the right concept”; once formulated in such new concepts, a simpler solution of
the problem becomes possible. In some cases, the new concepts allow an extension
of the solution method to other problems, and this encouraged the conviction that
they are the “right” ones.

Thus, progress in mathematics often is due to the interaction of the tendencies
of problem solution and conceptual clarification. The former provides solutions
formulated at a secured level of conceptual development but becoming gradually
(in advancing from problem to problem) complicated, finally “too” complicated;
the latter analyzes the concepts and methods and proposes concepts allowing for
a “clarification” of the solutions but yielding at the same time new problems.

The foregoing description is most accurate in the context of application where
CT does nothing more than react (algebraic topology before Kan); it is more in-
teresting but less clear what happens when unsolved problems are finally solved
by the introduction of new conceptual means. Before discussing examples, let us
notice that similar observations about conceptual transformations can be made
concerning proofs of theorems. The cases where an already established theorem is
proved in a new way are important on the one hand for legitimizing conceptual
transformations (as a test of solidity, so to say); conversely, conceptual transforma-
tions can precisely be motivated to find an “appropriate” proof for an important
theorem (where an explicit criterion of “appropriateness” remains to be given).

47Compare the diverging contemporary judgements on [Eilenberg and Mac Lane 1945] (pre-
sented in 2.3.2.1).

48An example is constituted by Grothendieck’s so-called standard conjectures—see 4.2.3: these
are completely split off from the original context of application, and this splitting off even was
encouraged by the fact that the original problem was resolved by different means.

49See for example the discussion of Hopf’s solution of the “Kn → Sn problem” in 2.1.2.2.
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Examples are the law of quadratic reciprocity50, the functorial proof of Brouwer’s
theorem of invariance of dimension [Spanier 1966] or Weil’s proof of de Rham’s
theorem [Weil 1952b].

In this book, we will be especially concerned with the following examples:
Poincaré’s duality theorem (4.2.2), the Riemann–Roch–Hirzebruch–Grothendieck
theorem (3.3.3.5), or the Lefschetz fixed point formula (2.1.2.1, 3.2.3.3). It turns
out that these theorems apply to a wider range of objects after the conceptual
transformation. Thus, this transformation may have been undertaken in order to
have the theorems available in new problem contexts—the aim would be not simply
to have nicer proofs of the theorems but to get a method of attack for a certain
problem not yet accessible. Hence, in these cases conceptual development no longer
serves merely to organize and simplify the presentation of already established
results but is at the heart of the solution of a yet unsolved problem. In some
examples of this kind, I will try to show that what happens is that the problems are
formulated as problems concerning a new kind of objects which are not constituted
by abstraction from the old objects.

The opposition of theory and applications discussed in 1.2.2.3 obviously
serves to distinguish clearly between the different levels. But since I want to study
the process of going from one level to another, it is natural that I am interested
especially in the interaction of theory and applications.

In what precedes, a commonplace among mathematicians was implicitly ap-
proved, namely that when new conceptual systems are introduced, they should
serve the purpose of providing better methods of attack for mathematical prob-
lems. But this commonplace needs to be criticized. For it happens quite often that
in the new context the old problems resist solution just as much as they did in
the old one. The truth about the commonplace is rather that important modi-
fications of the conceptual and methodological framework are about to be made
whenever old concepts “petered out”51. But it is by no means always the case that
the solution of the allegedly invincible problem jumps out of the nutshell with
the introduction of the new concepts (as Grothendieck expressed it in Récoltes
et semailles), rather, the new language (the new context, the new point of view)
“splits off”, yields new problems binding the forces of those who work in the new
manner. This observation makes some prejudices collapse, for example the tru-
ism that the acceptance of newly introduced concepts rests exclusively on their
appropriateness in solving open problems. The entire concept of a research pro-
gram calls for reevaluation: a collective mathematical activity is not always held
together by great open questions. New directions (such as, for instance, modern
algebra in Emmy Noether’s sense or similarly Grothendieck’s mathematics) are
not always pursued simply because young researchers feel that maybe they can
contribute to the victory over problems that have been regarded as invincible for

50See [Hecke 1923, 59].
51Poincaré points out—concerning physics—that conventions can become uninteresting: “Si

un principe cesse d’être fécond, l’expérience, sans le contredire directement, l’aura cependant
condamné”. [1905a, 146].
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a long time—rather, in these cases a paradigm is just by its questions separated
from its predecessors. Only when some time has elapsed without any progress in
the “great” problems can it be that the activity around a once new, now at least
“separated” language decreases.

1.2.3.2 Questioning of formerly tacit beliefs

La connoissance de la vérité est comme la santé de l’âme :
lors qu’on la possède, on n’y pense plus.

Descartes to Chanut, March 31, 1649 ; Œuvres V (1974), p.327.

In connection with the distinction between uses as a tool and uses as an ob-
ject, a particular aspect will be very important in considerations to follow, namely
the role of tacit assumptions about legitimacy of uses. The most important exam-
ple for a questioning of a use formerly taken for granted flows from the history
of axiomatic set theory. Let us look at some findings in axiomatic studies which
had important impacts in the development of epistemology of mathematics. These
events were related to the logicist program which is founded on the observation
that logic is particularly intuitive in the sense that to realize the truth of logical
theorems, no further reduction to even more intuitive truths is required. However,
the problems challenging the logicist program (Russell’s antinomy) led to the in-
clusion of existence postulates exceeding logic (like the reducibility axiom of type
theory or AC) in foundational systems. This reduction of mathematics to (ax-
iomatic) set theory was acknowledged more widely than Hilbert’s program to find
a consistency proof for mathematics in the scope of such a reduction. One held the
axioms of set theory capable of capturing what one imagined to be the properties
of extensions (i.e., capturing what was intended); in this sense, the axioms were
“intuitive”.

Now, the original intention was actually expressed in Frege’s unlimited axiom
of comprehension52; when it turned out that this axiom is not tenable, a guide-
line was needed along which substitutes for this axiom could be given. Folklore
has it that the axioms of set theory were chosen in such a way that the “usual”
mathematics could be derived from it53. However, under this maxim the axiomatic
framework can eventually exceed the original intention!

The friction between this maxim and the above mentioned idea concerning
the intuitivity of the axioms can be presented in the example of the axiom of
choice (AC). The fact that this axiom is independent54 of ZF destroys the hope of
obtaining with the axioms of set theory completely intuitive propositions, and this
in the following sense: Now, ZF + AC can hold, but it can also be that ZF + ¬AC
holds. Therefore, the axioms do not capture the intuitive concept of set, for they

52More precisely, Frege didn’t even take this as an explicit axiom but apparently did consider
it as so evident that he implemented it in his very symbolism; see [Ferreiros 1999, 304].

53Lawvere claims to have taken a similar way in assembling his axioms for the category of all
categories; 〈#34 p.286〉.

54This point is discussed in detail concerning the continuum hypothesis in 6.4.6.3.
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are not (as practised before) a description of the concept of set without questioning
validity: one realizes suddenly that what one believes might very well be invalid.
(The very fact that a law—an axiom—has been stated often indicates that someone
had the idea that one could equally well do otherwise. It is characteristic of tacit
beliefs or, as I will say later, intuitive uses not to have such ideas.)

This made shaky the role of axiomatic set theory as a foundation of an
informal, abstract concept. [Heinzmann 2002] expresses this, paraphrasing [Weyl
1985, 13], as follows:

Whereas the axiomatic method was [formerly] used for the purpose of elu-
cidating the foundations on which mathematicians build (Hilbert’s position),
it has become a tool for concrete mathematical research [ . . . ]; while formerly
Axiomatics was concerned with axioms which determine the structure of the
system, axiomatic systems are now the common basis for the investigation of
individual entities arising by specified constructions and differentiations such
as the study of definable sets of real numbers (descriptive set theory) or by
the variety of models of a given system.

Hence, the axiomatic method developed from a method of foundational re-
search towards a method of the research discipline set theory (and other math-
ematical subdisciplines). It lost its alleged significance as a tool of philosophical
analysis (which, according to Poincaré, it never really had).

From this example of the history of set theory,55 we can learn how the various
observations of discrepancies between the formal definition (or later the axiomatic
system) and the intended model influenced the strategies for grasping this model.
There were moments when one became aware that what one thought to be true
might very well be untrue. First, one certainly thought that formalizing or axioma-
tizing will give us additional security compared to naive uses, since the correctness
of these uses can be checked. But it turned out that we are dissatisfied with these
enterprises. Should we now worry about the loss of security? Or should we rather,
as Kreisel asked us to do, be honest about our capacity to grasp intended mod-
els and hence judge the value of an explication by the intended model (and not
conversely)?

1.3 Reductionist vs. pragmatist epistemology of
mathematics

In what follows, a certain epistemological position is developed in some detail.
At the end of the present book when the findings on category theory will be
better known, an interpretation of this position in relation to this concrete piece
of mathematical knowledge will be attempted. However, this concretization is not
meant to lend support to the epistemological position (as a kind of case study).

55The reader interested in an extensive account of the early history of set theory may wish to
read [Ferreiros 1999].



22 Chapter 1. Prelude: Poincaré, Wittgenstein, Peirce, and the use of concepts

For an epistemological doctrine cannot both be an a priori choice criterion and
means of interpretation for the historical facts and supported a posteriori by the
findings; the final justification of the epistemological doctrine must come from
somewhere else. Such a justification will not be attempted here (this is no book
on pragmatist philosophy in general56).

1.3.1 Criticizing reductionism

During the 20th century, the following epistemology of mathematics was predom-
inant: a sufficient condition for the possibility of the cognition of objects is that
these objects can be reduced to set theory. The conditions for the possibility of the
cognition of the objects of set theory (the sets), in turn, can be given in various
manners57; in any event, the objects reduced to sets do not need an additional
epistemological discussion—they “are” sets. Hence, such an epistemology relies
ultimately on ontology.

Doing mathematics, one tries to give proofs for propositions, i.e., to deduce
the propositions logically from other propositions (premisses). Now, in the reduc-
tionist perspective, a proof of a mathematical proposition yields an insight into
the truth of the proposition, if the premisses are already established (if one has
already an insight into their truth); this can be done by giving in turn proofs for
them (in which new premisses will occur which ask again for an insight into their
truth), or by agreeing to put them at the beginning (to consider them as axioms
or postulates). The philosopher tries to understand how the decision about what
propositions to take as axioms is arrived at, because he or she is dissatisfied with
the reductionist claim that it is on these axioms that the insight into the truth of
the deduced propositions rests. Actually, this epistemology might contain a short-
coming since Poincaré (and Wittgenstein, see 1.3.1.3) stressed that to have a proof
of a proposition is by no means the same as to have an insight into its truth.

I think that the attempts to disclose the ontology of mathematical objects58
reveal the following tendency in epistemology of mathematics: Mathematics is

56I do not pretend to the authorship of the basic ideas contained in the following remarks;
to a large extent, they stem from Gerhard Heinzmann who is preparing a publication on the
subject. What is new about my contribution is the attempt to apply this approach to a concrete
piece of mathematics. But due to the lack of other literature at the present time, a preliminary
exposition of the generalities cannot be avoided.

57Frege conceived the axioms as descriptions of how we actually manipulate extensions of
concepts in our thinking (and in this sense as inevitable and intuitive “laws of thought”). Hilbert
admitted the use of intuition exclusively in metamathematics where the consistency proof is
to be done (by which the appropriateness of the axioms would be established); Bourbaki takes
the axioms as mere hypotheses (see 6.4.6.1). Hence, Bourbaki’s concept of justification is the
weakest of the three: “it works as long as we encounter no contradiction”; nevertheless, it is still
epistemology, because from this hypothetical-deductive point of view, one insists that at least a
proof of relative consistency (i.e., a proof that the hypotheses are consistent with the frequently
tested and approved framework of set theory) should be available.

58Set theory is naturally but the last of a whole series of such attempts most of which will not
be discussed here.
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seen as suffering from a lack of ontological “determinateness”, namely that this
science (contrarily to many others) does not concern material data such that the
concept of material truth is not available (especially in the case of the infinite).
This tendency is embarrassing since on the other hand mathematical cognition is
very often presented as cognition of the “greatest possible certainty” just because
it seems not to be bound to material evidence, let alone experimental check.

The technical apparatus developed by the reductionist and set-theoretical
approach nowadays serves other purposes, partly for the reason that tacit beliefs
about sets were challenged59; the explanations of the science which it provides are
considered as irrelevant by the practitioners of this science60. There is doubt that
the above mentioned sufficient condition is also necessary; it is not even accepted
throughout as a sufficient one. But what happens if some objects, as in the case
of category theory, do not fulfill the condition? It seems that the reductionist
approach, so to say, has been undocked from the historical development of the
discipline in several respects; an alternative is required.

Set operations during the historical development turned out to be something
quite fundamental for mathematical thinking; but I do not think that this justifies
the conclusion that the sets determined by these operations are those “first things”
(τα πρωτα) in whose grasp all (mathematical) cognition can be reduced. Rather,
foundational research in mathematics seems to reach ever new schemes of operation
recognizable as “fundamental” which do not necessarily replace but do replenish
the old ones.

1.3.1.1 Peirce on reductionism

Anterior to Peirce, epistemology was dominated by the idea of a grasp of objects;
since Descartes, intuition was considered throughout as a particular, innate capac-
ity of cognition (even if idealists thought that it concerns the general, and empirists
that it concerns the particular). The task of this particular capacity was the foun-
dation of epistemology; already from Aristotle’s first premisses of syllogism, what
was aimed at was to go back to something first (τα πρωτα).

In this traditional approach, it is by the ontology of the objects that one hopes
to answer the fundamental question concerning the conditions for the possibility of
the cognition of these objects. One hopes that there are simple “basic objects” to
which the more complex objects can be reduced and whose cognition is possible by
common sense—be this an innate or otherwise distinguished capacity of cognition
common to all human beings. Here, epistemology is “wrapped up” in (or rests on)
ontology; to do epistemology one has to do ontology first.

Peirce shares Kant’s opinion expressed above according to which the object
depends on the subject (1.2.2.2); however, he does not agree that reason is the
crucial means of cognition to be criticised. In his paper “Questions concerning cer-
tain faculties claimed for man”, he points out the basic assumption of pragmatist

59See 1.2.3.2.
60See 1.1.2.
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philosophy: every cognition is semiotically mediated (makes use of signs). He says
that there is no immediate cognition (a cognition which “refers immediately to its
object”), but that every cognition “has been determined by a previous cognition”
of the same object (Question 1 and discussion). Correspondingly, Peirce replaces
critique of reason by critique of signs. He thinks that Kant’s distinction between
the world of things per se (Dinge an sich) and the world of apparition (Erschein-
ungswelt) is not fruitful; he rather distinguishes the world of the subject and the
world of the object, connected by signs; his position consequently is a “hypotheti-
cal realism” in which all cognitions are only valid with reservations. This position
does not negate (nor assert) that the object per se (with the semiotical mediation
stripped off) exists, since such assertions of “pure” existence are seen as necessarily
hypothetical (that means, not withstanding philosophical criticism).

By his basic assumption, Peirce was led to reveal a problem concerning the
subject matter of epistemology, since this assumption means in particular that
there is no intuitive cognition in the classical sense (which is synonymous to “im-
mediate”). Hence, one could no longer consider cognitions as objects; there is no
intuitive cognition of an intuitive cognition. Intuition can be no more than a re-
lation. “All the cognitive faculties we know of are relative, and consequently their
products are relations” (5.262). According to this new point of view, intuition
cannot any longer serve to found epistemology, in departure from the former re-
ductionist attitude. A central argument of Peirce against reductionism or, as he
puts it,

the reply to the argument that there must be a first is as follows: In
retracing our way from our conclusions to premisses, or from determined
cognitions to those which determine them, we finally reach, in all cases, a
point beyond which the consciousness in the determined cognition is more
lively than in the cognition which determines it [Peirce 1935, 5.263].

Peirce gives some examples derived from physiological observations about per-
ception, like the fact that the third dimension of space is inferred, and the blind
spot of the retina (5.219 and 5.220, respectively). In this situation, the process of
reduction loses its legitimacy since it no longer fulfills the function of cognition
justification. At such a place, something happens which I would like to call an
“exchange of levels”: the process of reduction is interrupted in that the things ex-
change the roles performed in the determination of a cognition: what was originally
considered as determining is now determined by what was originally considered as
asking for determination.

The idea that contents of cognition are necessarily provisional has an effect
on the very concept of conditions for the possibility of cognitions. It seems to me
that one can infer from Peirce’s words that what vouches for a cognition is not
necessarily the cognition which determines it but the livelyness of our consciousness
in the cognition. Here, “to vouch for a cognition” means no longer what it meant
before (which was much the same as “to determine a cognition”), but it still means
that the cognition is (provisionally) reliable. This conception of the livelyness of
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our consciousness roughly might be seen as a substitute for the capacity of intuition
in Peirce’s epistemology—but only roughly, since it has a different coverage.

1.3.1.2 Peirce on prejudices, and the history of concepts

Such an epistemology can be considered as having a historical aspect: exchanges
of levels in a conceptual framework can occur in the historical development of
this framework. One could even define conceptual progress as such an exchange of
level: scientific knowledge makes progress precisely when such an exchange occurs.
In this historical version of the approach, Peirce meets Kuhn, so to say.

Peirce in his paper “Some consequences of four incapacities” criticises the
cartesian methodological imperative of universal doubt; he says

We must begin with all the prejudices which we actually have when we
enter upon the study of philosophy. These prejudices are not to be dispelled by
a maxim, for they are things which it does not occur to us can be questioned.
[ . . . ] A person may, it is true, in the course of his studies, find reason to
doubt what he began by believing; but in that case he doubts because he has
a positive reason for it, and not on account of the Cartesian maxim (5.265).

In the case of epistemology of mathematics, it is the task of the philosopher to
question the prejudices of the workers in the field.

As announced, I have the impression that even a “historical brand” of re-
ductionism (a “provisional reductionism”) fails if it holds that the worst that can
happen is the coming about of a new level on which the level formerly seen as
basic turns out to depend. The notions of “basic” and “dependent” involved here
are by no means in a simple relation (they are not precisely opposite): there are
examples where the “dependent” level is still more “basic” than the level on which
it depends. Much like Kreisel, Peirce stresses that we can be honest about our ca-
pacity to decide what is basic for us and what is not (“the consciousness . . . is more
lively”). However, this would yield an epistemology based on introspection (against
which Peirce argues strongly, see 5.244ff) if one were not able to explain how we
can learn such convictions. For in this case we will not only believe we have our
convictions, but we will know at least how we got them. History tells us that new
results can come about which show us that things can differ from expectations.
The blind spot, used as an example by Peirce, had first to be discovered. That
means: it is not the hierarchy of dependence that changes, but our knowledge of
this hierarchy. As far as mathematics’ conceptual history is concerned, such new
results are obtained no longer in the field of physiology, but concerning concepts
and their properties. We have two hierarchies here, one created by the relation of
dependence, the other by the relation “more basic”. Such a situation of competing
hierarchies seems to be part of the problem in the philosophical debate on CT: on
the one hand, categories (with some difficulties) can be described in the language
of sets and classes; on the other hand, sets are just another example of a category.
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1.3.1.3 Wittgenstein’s criticism of reductionism

Wittgenstein’s criticism of Russell’s logicist foundation of mathematics contained
in [1956] consists in saying that it is not the formalized version of mathematical
deduction which vouches for the validity of the intuitive version but conversely. In
my opinion, this criticism can easily be transferred to the philosophy of set theory.

If someone tries to shew that mathematics is not logic, what is he trying to
shew? He is surely trying to say something like:—If tables, chairs, cupboards,
etc. are swathed in enough paper, certainly they will look spherical in the
end.

He is not trying to shew that it is impossible that, for every mathematical
proof, a Russellian proof can be constructed which (somehow) ‘corresponds’
to it, but rather that the acceptance of such a correspondence does not lean
on logic61 [Wittgenstein 1956] II-53.

Taking up Wittgenstein’s criticism, Hao Wang discusses the view that mathe-
matics “is” axiomatic set theory as one of several possible answers to the ques-
tion “What is mathematics?”. Wang points out that this view is epistemologically
worthless, at least as far as the task of understanding the feature of cognition
guiding is concerned:

Mathematics is axiomatic set theory. In a definite sense, all mathematics
can be derived from axiomatic set theory. [ . . . ] There are several objections to
this identification. [ . . . ] This view leaves unexplained why, of all the possible
consequences of set theory, we select only those which happen to be our math-#2
ematics today, and why certain mathematical concepts are more interesting
than others. It does not help to give us an intuitive grasp of mathematics
such as that possessed by a powerful mathematician. By burying, e.g., the
individuality of natural numbers, it seeks to explain the more basic and the
clearer by the more obscure. It is a little analogous to asserting that all phys-
ical objects, such as tables, chairs, etc., are spherical if we swathe them with
enough stuff [Wang 1971, 49].

Reductionism is an age-old project; a close forerunner of its incarnation in set
theory was the arithmetization program of the 19th century. In the context of
our criticism, it is interesting that one of its prominent representatives, Richard
Dedekind, exhibited a quite distanced attitude towards a consequent carrying out
of the program:

It appears as something self-evident and not new that every theorem of
algebra and higher analysis, no matter how remote, can be expressed as a
theorem about natural numbers [ . . . ] But I see nothing meritorious [ . . . ] in

61“Was will Einer zeigen, der zeigen will, daß Mathematik nicht Logik ist? Er will doch etwas
sagen wie:– Wenn man Tische, Stühle, Schränke etc. in genug Papier wickelt, werden sie gewiß
endlich kugelförmig ausschauen.

Er will nicht zeigen, daß es unmöglich ist, zu jedem mathematischen Beweis einen Russell-
schen zu konstruieren, der ihm (irgendwie) ‘entspricht’, sondern, daß das Anerkennen so einer
Entsprechung sich nicht auf Logik stützt”.
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actually performing this wearisome circumlocution and insisting on the use
and recognition of no other than rational[62 ] numbers63 [Dedekind 1901, 35].

Hence, it is not this actual translation in terms of natural numbers that is really
aimed at in the program—and this since it wouldn’t explain very much, just like the
later reduction of natural numbers to sets according to Wang “seeks to explain the
more basic and the clearer by the more obscure”. I will later (1.3.1.4) say something
about what ultimately is the task of such reductions, if it is not explanation, after
all; here, I want to understand somewhat better why it does not “explain” anything.

Georges Perec wrote a detective novel without using the letter ‘e’ (La dis-
parition, English A void; [1969]), thus proving not only that such an enormous
enterprise is indeed possible but also that formal constraints sometimes have great
aesthetic appeal. I think that the translation of mathematical propositions into a
poorer linguistic framework can easily be compared with such painful lipogram-
matical64 exercises. In principle all logical connectives can be simulated in a frame-
work exclusively using Sheffer’s stroke, and all cuts (in Gentzen’s sense) can be
eliminated; one can do without common language at all in mathematics and for-
malize everything and so on: in principle, one could leave out a whole lot of things.
However, in doing so one would depart from the true way of thinking employed
by the mathematician (who really uses “and” and “not” and cuts and who does
not reduce many things to formal systems). Obviously, it is the proof theorist as a
working mathematician who is interested in things like the reduction to Sheffer’s
stroke since they allow for more concise proofs by induction in the analysis of a
logical calculus. Hence this proof theorist has much the same motives as a mathe-
matician working on other problems who avoids a completely formalized treatment
of these problems since he is not interested in the proof-theoretical aspect.

There might be quite similar reasons for the interest of some set theorists in
expressing usual mathematical constructions exclusively with the expressive means
of ZF (i.e., in terms of ∈). But beyond this, is there any philosophical interpretation
of such a reduction? In the last analysis, mathematicians always transform (and
that means: change) their objects of study in order to make them accessible to
certain mathematical treatments65. If I consider a mathematical concept as a tool,
I do not only use it in a way different from the one in which I would use it if I
considered it as an object; moreover, in my semiotical representation of it, I give
it a form which is different in both cases. In this sense, the proof theorist has to
“change” the mathematical proof (which is his or her object of study to be treated

62probably a misprint for “natural”; compare the original text cited in the next note.
63“[Es] erscheint [ . . . ] als etwas Selbstverständliches und durchaus nichts Neues, daß jeder

auch noch so fern liegende Satz der Algebra und höheren Analysis sich als ein Satz über die
natürlichen Zahlen aussprechen läßt [ . . . ]. Aber ich erblicke keineswegs etwas Verdienstliches
darin [ . . . ], diese mühselige Umschreibung wirklich vornehmen und keine anderen als die na-
türlichen Zahlen benutzen und anerkennen zu wollen” [Dedekind 1887, vi].

64“Lipogramme” is the terminus technicus used in literary studies for texts avoiding certain
letters.

65Such a phenomenon will be observed below in Grothendieck’s work; see 4.3.
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with mathematical tools). When stating that something is used as object or as
tool, we have always to ask: in which situation, or: by whom.

A second observation is that the translation of propositional formulæ in terms
of Sheffer’s stroke in general yields quite complicated new formulæ. What is “sim-
ple” here is the particularly small number of symbols needed; but neither the
semantics becomes clearer (recall that p|q means “not both p and q”; cognitively,
this looks more complex than “p and q” and so on), nor are the formulæ you get
“short”. What is looked for in this case, hence, is a reduction of numerical com-
plexity, while the primitive basis attained by the reduction cognitively looks less
“natural” than the original situation (or, as Peirce expressed it, “the consciousness
in the determined cognition is more lively than in the cognition which determines
it”; see section 1.3.1.1); similarly in the case of cut elimination. In contrast to this,
many philosophers are convinced that the primitive basis of operating with sets
constitutes really a “natural” basis of mathematical thinking, i.e., such operations
are seen as the “standard bricks” of which this thinking is actually made—while
no one will reasonably claim that expressions of the type p|q play a similar role
for propositional logic. And yet: reduction to set theory does not really have the
task of “explanation”. It is true, one thus reduces propositions about “complex”
objects to propositions about “simple” objects; the propositions themselves, how-
ever, thus become in general more complex. Couched in Fregean terms, one can
perhaps more easily grasp their denotation (since the denotation of a proposition
is its truth value) but not their meaning. A more involved conceptual framework,
however, might lead to simpler propositions (and in most cases has actually just
been introduced in order to do so). A parallel argument concerns deductions: in
its totality, a deduction becomes more complex (and less intelligible) by a decom-
position into elementary steps; one can easier check its correctness but struggles
harder to understand its overall strategy since overview is quickly lost.

Now, it will be subject to discussion whether in the case of some set operations
it is admissible at all to claim that they are basic for thinking (which is certainly
true in the case of the connectives of propositional logic). It is perfectly possible
that the common sense which organizes the acceptance of certain operations as
a natural basis relies on something different, not having the character of some
eternal laws of thought. I claim: it relies on training.

Is it possible to observe that a surface is coloured red and blue; and not
to observe that it is red? Imagine a kind of colour adjective were used for
things that are half red and half blue: they are said to be ‘bu’. Now might not
someone to be trained to observe whether something is bu; and not to observe
whether it is also red? Such a man would then only know how to report: “bu”
or “not bu”. And from the first report we could draw the conclusion that the
thing was partly red66 [Wittgenstein 1956] V-42.

66“Ist es möglich, zu beobachten, daß eine Fläche rot und blau gefärbt ist, und nicht zu be-
obachten, daß sie rot ist? Denk Dir, man verwende eine Art Farbadjektiv für Dinge, die halb
rot, halb blau sind: Man sagt sie seien ‘bu’. Könnte nun jemand nicht darauf trainiert sein,
zu beobachten, ob etwas bu ist; und nicht darauf, ob es auch rot ist? Dieser würde dann nur
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1.3.1.4 Criticizing formalism

The question of whether intended models can in principle be grasped by formal
concept definitions was a central problem of philosophy in the 1930s; the cor-
responding discussion can be reduced to the formula Oxford vs. Cambridge. In
Oxford, one rather favored natural language and pragmatics, while in Cambridge
formalism was upheld (criticized by Wittgenstein; see for example the citation at
the end of the section 1.2.1.1).

Quine in [1948] revived the old nominalist thesis that the idea of a concept as
an entity is senseless since there is no clear criterion of identification for concepts—
and “no entity without identity” [1977, 35]. Statements concerning concepts do
not withstand this particular philosophical criticism. Quine’s conclusion was the
following: science can only speak about extensions of concepts. This yields the
primacy of set theory. In Quine’s view, extensions are pretty legitimate entities.
For example, numbers in set theory are defined through an equivalence relation;
by this procedure, numbers become abstract entities which can be identified (since
an equivalence relation yields a partition). This is, mutatis mutandis, true for all
mathematical objects available in set theory: they become identifiable (and hence,
they become entities) thanks only to the concept of equivalence relation. In this
sense, set theory can be thought of establishing mathematical objects as entities
(but it does not succeed in doing so since there are nonstandard models).

But there is another possible solution to the problem of concepts (in the spirit
of Oxford philosophy): what counts is the learning of the rules of use; mathematics
in this sense is as much of a language as other languages. We can communicate,
after all, without knowing what a concept is.

Continuing the formalism debate, Kreisel criticized (from a somewhat em-
piricist standpoint) the “formalist-positivist doctrine” which he characterizes as
asserting that “only formally defined notions and therefore only explanations in
formal terms are precise” [1970, 17] (see also 1.1.2). Kreisel opposes “formal no-
tions” to “non-formal notions”—which at first glance sounds quite trivial; however,
it is quite probable that Kreisel thought in his mother-language (i.e., in German)
here, which provides a more substantial distinction between formal and inhaltlich
(that means: “related to content”)67. Kreisel stressed that within mathematics ab-
stract concepts are needed to make reasoning intelligible and that to achieve this,
the use of such concepts is required without referring back, at each stage, to some
“explication” (p.29).

The philosopher who criticizes formalism does not agree that the transition to
an explication, the transformation of informal rules into formal ones68, constitutes

zu melden wissen: “bu”, oder “nicht bu”. Und wir könnten aus der ersten Meldung den Schluß
ziehen, das Ding sei zum Teil rot”.

67This is actually how the distinction is presented in the German translation of Kreisel’s paper
[1974]. The same problem of translation is already present in Hilbert’s writing, compare n.485.

68Actually, it is not even clear whether such a transformation really takes place; the debate
concerns in particular the question whether a control of agreement between explicandum and
explicatum is really possible.
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an insight. Both kinds of rules are needed simultaneously—because otherwise one
faces immediately a criterion problem since on the basis of mere unfolding of formal
rules one can barely make any decisions.

Admittedly: a concept is explicated because one observes that to proceed
further one needs it in a form in which the correct use can be checked formally.
But what vouches for the legitimacy of the concept is not the presence of a formal
definition.

1.3.2 A new conception of intuition

1.3.2.1 Some uses of the term “intuition”

During his attempt to axiomatize the category of all categories (see 7.2.2), Lawvere
says

Our intuition tells us that whenever two categories exist in our world, then
so does the corresponding category of all natural transformations between the
functors from the first category to the second [1966, 9].

However, if one tries to reduce categorial constructions to set theory, one faces
some serious problems in the case of a category of functors (see chapter 6). Lawvere
(who, according to his aim of axiomatization, is not concerned by such a reduction)
relies here on “intuition” to stress that those working with categorial concepts
despite these problems have the feeling that the envisaged construction is clear,
meaningful and legitimate. Not the reducibility to set theory, but an “intuition” to
be specified answers for clarity, meaningfulness and legitimacy of a construction
emerging in a mathematical working situation. In particular, Lawvere relies on
a collective intuition, a common sense—for he explicitly says “our intuition”69.
Further, one obviously has to deal here with common sense on a technical level,
for the “we” can only extend to a community used to the work with the concepts
concerned70.

In the present chapter, we are concerned with the epistemological analysis
of appeals to intuition in general; to this end, we should first note what are the
different meanings in which the term “intuition” is usually (in the contexts here
relevant) employed.

In the tradition of philosophy, “intuition” means immediate, i.e., not con-
ceptually mediated cognition. The use of the term in the context of validity (im-
mediate insight in the truth of a proposition) is to be thoroughly distinguished
from its use in the sensual context (the German Anschauung). Now, language is a
manner of representation, too, but contrary to language, in the context of images

69I do not think this plural is a simple matter of style in scientific writing (where interestingly
the plural counts traditionally for modesty, in opposition to other genres) because Lawvere unlike
Descartes would certainly not claim that his personal intuitions were able to legitimate whatever.

70The role of technical common sense in the context of problematic constructions in CT is
discussed in sections 6.4.4.1 and 8.1.2.
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the concept of validity is meaningless. Consequently, I distinguish between sensual
intuition and validity intuition.

In current language, the term “intuition” is also used in the sense of “good
nose”. This usage is intended in particular when mathematicians say “intuitively,
it should be so and so” or the like. This corresponds to “flair” which is employed
primarily for the good nose of, e.g., dogs, but figuratively also for the good nose of,
e.g., Sherlock Holmes. The “intuitive ideas” of a mathematician guide him in his
search. See [Bourbaki 1948b, 42]; the following passage by Wittgenstein is relevant
here as well:

Suppose that one were to say “guessing right” instead of “intuition”? This
would shew the value of an intuition in a quite different light. For the phe-
nomenon of guessing is a psychological one, but not that of guessing right71

[Wittgenstein 1956] III-22.

Obviously, the aspect of cognition guiding is touched on here. Especially the sen-
sual intuition can take the guiding (or heuristic) function72; see [Volkert 1986,
xviii]. There have been many working situations in history of mathematics in
which making the objects of investigation accessible to a sensual intuition (by
providing a Veranschaulichung) yielded considerable progress in the development
of the knowledge concerning these objects. As an example, take the following ac-
count by Emil Artin of Emmy Noether’s contribution to the theory of algebras:

Emmy Noether introduced the concept of representation space—a vector
space upon which the elements of the algebra operate as linear transforma-
tions, the composition of the linear transformation reflecting the multiplica-
tion in the algebra. By doing so she enables us to use our geometric intuition
[Artin 1950, 67].

Similarly, Fréchet thinks to have really “powered” research in the theory of func-
tions and functionals by the introduction of a “geometrical” terminology:

One can [ . . . ] consider the numbers of the sequence [of coefficients of a
Taylor series] as coordinates of a point in a space [ . . . ] of infinitely many
dimensions. There are several advantages to proceeding thus, for instance the
advantage which is always present when geometrical language is employed,
since this language is so appropriate to intuition due to the analogies it gives
birth to73 [Fréchet 1906].

Mathematical terminology often stems from a current language usage whose (in-
tuitive, sensual) connotation is welcomed and serves to give the user an “intuition”

71“Wie, wenn man statt “Intuition” sagen würde “richtiges Erraten”? das würde den Wert
einer Intuition in einem ganz anderen Lichte zeigen. Denn das Phänomen des Ratens ist ein
psychologisches, nicht aber das des richtig Ratens” .

72We will see in section 4.3 that also the validity intuition can take such a function; “one is
convinced from the beginning that the result has to be true”.

73“On peut [ . . . ] considérer les nombres de la suite [des coefficients d’une série de Taylor]
comme les coordonnées [d’]un point d’un espace [ . . . ] à une infinité dénombrable de dimensions.
Il y a plusieurs avantages à opérer ainsi [dont] l’avantage qui se présente toujours quand on
emploie le langage géométrique si propice à l’intuition par les analogies qu’il fait naître” .
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of what is intended. While CT is often classified as a highly abstract matter quite
remote from intuition74, I think that in reality it yields, together with its applica-
tions, a multitude of nice examples for the role of current language in mathematical
conceptualization. I am convinced that mathematicians who spoke about sheaves,
stacks, pullbacks etc. aimed at (and actually succeeded in) introducing intuition
into complicated matters.

This notwithstanding, there is naturally also a tendency in contemporary
mathematics to eliminate as much as possible commitments to (sensual) intuition
in the erection of a theory.

It seems to me that algebraic geometry fulfills only in the language of
schemes that essential requirement of all contemporary mathematics: to state
its definitions and theorems in their natural abstract and formal setting in
which they can be considered independent of geometric intuition [Mumford
1965, iv].

(However, compare also n.334 for the continuation of Mumford’s uttering).
[Kreisel 1970, 36ff] discusses broadly three cases in which our intuitive con-

victions were deemed responsible for occuring difficulties: set-theoretic paradoxes,
Gödel’s incompleteness theorem and Cantor’s discovery of the cardinal equivalence
between the unit segment and the unit square. According to Kreisel, these “alleged
errors of our intuitive impressions”, often taken as motivation for the formalist-
positivist doctrine against which Kreisel is fighting, in reality are not responsible
for the difficulties. Kreisel strongly believes in our empirically manifested capacity
of intuitive insight. (While the German translation [Kreisel 1974] also uses the
term intuitiv, I am nevertheless convinced that Kreisel when saying “intuitive” in
English at least partly thought of the German anschaulich which has not much to
do with “not conceptually mediated” but is related to the role of sensual perception
in abstract thinking.)75

1.3.2.2 Intuitive uses and common senses

We have defined [velocity] v by means of a subtle relation between two
new quantities, ε and δ, which in some sense are irrelevant to v itself. [ . . . ]
The truth is that in a real sense we already knew what instantaneous velocity
was before we learned this definition; for the sake of logical consistency we
accept a definition that is much harder to understand than the concept being
defined. Of course, to a trained mathematician the epsilon-delta definition is
intuitive; this shows what can be accomplished by training [Davis and Hersh
1980, 245f].

74The well-known expression “general abstract nonsense” is rather meant as a joke (compare
section 2.3.2.1).

75The uses of the term intuition in philosophy of science are so numerous, and the corresponding
discussion is so vaste, that it is difficult to decide where to draw the borderline in a concise account
of this discussion. I will stop here; more information will be found in philosophical dictionaries.
See also Popper’s interesting discussion of various uses of the term, among others bei Bergson
and Einstein; [1992, 32].
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In the pragmatist approach, intuition is seen as a relation. This means: one
uses a piece of language in an intuitive manner (or not); intuitive use depends on
the situation of utterance, and it can be learned and transformed. The reason for
this relational point of view, let me repeat it, consists in the pragmatist conviction
that each cognition of an object depends on the means of cognition employed—
this means that for pragmatism there is no intuitive (in the sense of “immediate”)
cognition; the term “intuitive” has to be given a new meaning.

What does it mean to use something intuitively? Heinzmann makes the fol-
lowing proposal: one uses language intuitively if one does not even have the idea to
question validity. Hence, the term intuition in the Heinzmannian reading of prag-
matism takes a different meaning, no longer signifies an immediate grasp (saisie).
Let us illustrate this in the example of what has been called validity intuition in
section 1.3.2.1: classically, an intuitively true proposition is in particular a true
proposition; hence, what is considered as intuitive here is the fact that the propo-
sition is true. In pragmatism, however, intuitive use of a proposition means that
its truth is not thematized (checked), if it does not come to one’s mind to check
it.

However, it is yet to be explained what it means for objects in general (and
not only for propositions) to “question the validity of a use”. One uses an object
intuitively76, if one is not concerned with how the rules of constitution of the
object have been arrived at, if one does not focus the materialization of these
rules but only the benefits of an application of the object in the present context.
“In principle”, the cognition of an object is determined by another cognition, and
this determination finds its expression in the “rules of constitution”; one uses it
intuitively (one does not bother about the being determined of its cognition), if
one does not question the rules of constitution (does not focus the cognition which
determines it). This is precisely what one does when using an object as a tool—
because in doing so, one does not (yet) ask which cognition determines the object.
When something is used as a tool, this constitutes an intuitive use, whereas the
use of something as an object does not (this defines tool and object). Here, each
concept in principle can play both roles; among two concepts, one may happen to
be used intuitively before and the other after the progress of insight.

Note that with respect to a given cognition, Peirce when saying “the cognition
which determines it” always thinks of a previous cognition because he thinks of a
determination of a cognition in our thought by previous thoughts. In conceptual
history of mathematics, however, one most often introduced an object first as a tool
and only after having done so did it come to one’s mind to ask for “the cognition
which determines the cognition of this object” (that means, to ask how the use of
this object can be legitimized). I clean my glasses most often after having tried in
vain to look through them (which in turn normally only occurs after having used
them quite some time with success).

76To say that “an object is used intuitively” is not in conflict with our terminology as long as
the term “object” is used not in the qualified sense here (I do not think of a use as an object
here). Recall the warning about this terminology contained in section 1.2.3.1.



34 Chapter 1. Prelude: Poincaré, Wittgenstein, Peirce, and the use of concepts

The idea that it could depend on the situation whether validity is questioned
or not has formerly been overlooked, perhaps because one always looked for a
reductionist epistemology where the capacity called intuition is used exclusively at
the last level of regression; in a pragmatist epistemology, to the contrary, intuition
is used77 at every level in form of the not thematized tools.

In classical systems, intuition was not simply conceived as a capacity; it was
actually conceived as a capacity common to all human beings. “But the power of
intuitively distinguishing intuitions from other cognitions has not prevented men
from disputing very warmly as to which cognitions are intuitive”. (Peirce 5.214)
Moreover, Peirce criticises strongly cartesian individualism (which has it that the
individual has the capacity to find the truth; 5.265). We could sum up this phi-
losophy thus: we cannot reach definite truth, only provisional; significant progress
is not made individually but only collectively; one cannot pretend that the his-
tory of thought did not take place and start from scratch, but every cognition is
determined by a previous cognition (maybe by other individuals); one cannot un-
cover the ultimate foundation of our cognitions; rather, the fact that we sometimes
reach a new level of insight, “deeper” than those thought of as fundamental be-
fore, merely indicates that there is no “deepest” level. The feeling that something
is “intuitive” indicates a prejudice which can be philosophically criticised (even if
this does not occur to us at the beginning).

In our approach, intuitive use is collectively determined: it depends on the
particular usage of the community of users whether validity criteria are or are not
questioned in a given situation of language use. However, it is acknowledged that
for example scientific communities develop usages making them communities of
language users on their own. Hence, situations of language use are not only parti-
tioned into those where it comes to the users’ mind to question validity criteria and
those where it does not, but moreover this partition is specific to a particular com-
munity (actually, the community of language users is established partly through a
peculiar partition; this is a definition of the term “community of language users”).
I call such a partition the common sense of the community at hand.

The existence of different communities with different common senses can
lead to the following situation: something is used intuitively by one group, not
intuitively by another. In this case, discussions inside the discipline occur; one has
to cope with competing common senses (which are therefore not really “common”).
This constitutes a task for the historian.

1.3.2.3 Provisional validity

In mathematics, we cannot know which uses are valid ones, because we do not
know which of them lead to contradictions and which do not. But we can observe
many times in the history of mathematics (and of science) that the community of
researchers at a first stage took such and such tacit assumptions for granted and

77actually, used for a slightly different purpose; see the end of section 1.3.1.1.
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later was forced to be more explicit when new results came up. What happens,
hence, is that the validity of certain uses is not questioned first but becomes
questioned later. By analyzing such changes in questioning validity, we cannot hope
to find out which uses finally are valid and which are not; but we can understand
several other things. We can understand which is the kind of events that make
shaky the former tacit assumptions, and which is the role played by considerations
of the validity of uses in a scientific discourse, more particularly how a community
replaces, in a quite “rational” way, the former tacit assumptions by new ones in
order to reestablish a system of sense for their activity. (And the new ones, very
much like the old ones, really are tacit after a while!) In this way one can explain,
for instance, why CT is used despite its foundational difficulties. Of course, one
can not explain in the same way why CT works despite these difficulties. Maybe
the second problem looks like the more interesting philosophical problem; but to
be precise we only know that CT worked (or seemed to work) up to now, so in
a certain manner it is too early (and will always be too early if CT continues to
work) to attack this problem.

How is the property to be “reasonable” related to legitimacy? At first glance,
it serves chiefly to refine the relation of definition and intended model. But the
question of the intended model actually concerns a certain kind of legitimacy: uses
which are not in accord with the intended model are obviously “legitimate” (and it
is even necessary to locate all of them) in investigations of the formal definition, for
example if one wants to check whether this definition grasps the intended model.
But these uses are not thought of when the concept is used as a tool. In order to
use something as an object, the formal definition has to be taken seriously; in order
to use something as a tool, one rather relies on the rules of reasonable use. But this
does not mean that categorists deal with CT as an object. For not the concepts
of CT as formally defined are object of their investigation, but certain instances
of these concepts obtained thanks to criteria which depend on the application of
the concepts.

What you have are two concepts of legitimacy; on the one hand: is it legiti-
mate to ask for this and that in an investigation?, on the other hand: does this or
that lead to contradictions?

In this second sense, we cannot know for most legitimate mathematical ob-
jects whether they are indeed legitimate. For this reason, when speaking about
“possible” uses, I do not mean that they are legitimate in this sense. Legitimacy
of the first kind is nothing but relevance, namely relevance for an investigation.
Pathologies look pathological because they are irrelevant to the investigation in
view of which the concept has been introduced. To assess them as pathologies in-
cludes that a use as object is not recognized as relevant. When alleged pathologies
are used nevertheless, the original interpretation gave way to another one. Legiti-
macy is subordinate to relevance in the following sense: we fight for the legitimacy
of what is relevant and not conversely. Our experience is more reliable as regards
relevance than as regards legitimacy. In some cases, the pathological uses maybe
are excluded as unreasonable because instinctively they seem to lead to problems
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(and they are stressed for the same reason when one is about to check the validity
of a definition). Hence, to emphasize reasonable uses can be a means to exclude
some uses which are candidates for illegitimate uses (but it is not guaranteed that
all reasonable uses are legitimate).

1.3.2.4 What is accomplished by this new conception of intuition?

As we have seen (1.2.2.2), traditional positions in epistemology stress mainly cog-
nition foundation and in general give little information on principles of cognition
guiding (this matter of fact was criticised by Wittgenstein and Wang). In pragma-
tism, however, acts of foundation are inseparable from acts of constitution, and
this implies the inseparability of the cognition founding function from the cogni-
tion guiding function of a means of cognition. The object is used as an object on
one level and used as a tool on another level; the two aspects of being objects of
cognition and means of cognition are not different in principle. What changes is
the thematization, in dependence on whether something is used as object or as
tool; therefore pragmatism does not distinguish in principle between context of
discovery and context of justification but treats them merely as different aspects.
This is the major reason to adopt a mixed historical-philosophical methodology
in the present book.

As a historian, I restrict myself to describing how intuition is used; as a
philosopher, I point out that in my opinion it does not accomplish the task claimed
for it (to found eternal cognition). From my position, I am not forced to find
a substitute for it which accomplishes the task since I am convinced that the
task just cannot be accomplished. This attitude seems to weaken the power of
philosophy (which it never had, according to my position), but it is helpful in
other respects (for instance, the objection against this book presented in section
0.1.1 that it might be too early to present a conclusive philosophical account of
category theory is vacuous since there are no conclusive accounts anyway).

1.3.2.5 One more criticism of reductionism

It is interesting that in our pragmatist epistemology where intuition intervenes on
all levels the reduction to a basic level populated by some particularly intuitive
things is neither possible nor necessary. (Something like classical) intuition comes
into play in the process of reduction, in the building of the connections between
the different levels.

The pragmatist does not think that the objects which can be reduced to
sets “are” sets; rather, he or she asks on each level anew which are right there the
conditions for the possibility of cognition of the objects. Indeed, we will see that the
rules of constitution of the objects of category theory do not materialize simply by
abstraction from sets (or from basic objects of another kind), but the “structures”
encountered during the investigation of some objects (hence basically the facts
observed during this investigation) become the new objects of investigation. Using
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such facts as objects means not to ask any longer to which investigation these facts
are related. If it would be the case that objects of higher level actually emerge from
abstractions, the vertical progress would be monotone—and a reductionism would
be conceivable in reversion of this direction. However, we will see that in the case
of CT there are level exchanges, interruptions of monotonicity.

In what follows, I want to use observations about intuitive and non-intuitive
use in order to understand what are the true objects of investigation in the case
of category theory. Now, observations about intuitive use are less valuable in this
connection since they teach us only what is not used as an object. On the other
hand, they seem to be more easily made in the present case, because something
is used “despite”—and this seems to point to some intuitive use: some validity
is not questioned, and when people come from outside and question it, one says
that they do not have the “right” conception. For the problems occur only if the
things are used as objects in a certain way, if their constitution is thought of as a
construction from sets. Maybe in doing this one overlooks a torsion, one tries to
reduce the constitution of the objects in question to the cognition of something
in which the consciousness of the workers in the field is less lively, even if in some
sense it determines the objects they are using.

1.3.2.6 Counterarguments

A philosopher in the Poincaré sense of the term, that means someone who wants
to understand the decision for the conventions in vigour, could come and ask how
this peculiar partition comes about. He or she would perhaps not be satisfied by
the reply that it depends on the peculiar means of cognition of the community. For
he could very well continue to ask for the justification of these means of cognition.
Classically, this would amount to the question why exactly these means are “in
fact” means of cognition (in the sense of classical, unrestrictedly intersubjective
and eternal cognition which is not the same as cognition with provisional content).
But in my opinion one should apply Occam’s razor here (perhaps in a way Occam
himself would not have welcomed): the idea of a capacity of cognition which is
common indifferently and in an identical form to all human beings is not necessary
to understand mathematics. Sure, in principle each human being is able (or: has the
mental disposition or something the like) to decide on the truth of a mathematical
proposition, but in reality he or she is so only after having learned to use the
conceptual and methodological framework involved, and a bypass of such learning
as far as we know is impossible; hence it is entirely satisfactory in the search for
a theory of mathematical knowledge to investigate solely what “mathematicians”
(which means here people having actually learned these things) consider as a
mathematical cognition.

It may seem here that pragmatism refuses, certainly to the disappointment
of some readers, to give answers to legitimate questions. Moreover, it seems that
pragmatism puts too much stress on the experts, while the genuine philosopher
(who is thought of as impartial) is rendered “superfluous”. I think, however, that
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the stress on the experts is, at least in view of the desirable reconciliation be-
tween philosophy and the research discipline mathematics (see section 1.1.2), not
automatically a disadvantage.

Can we offer any real alternative for the epistemology we have to give up? I
think epistemology should learn from the sciences that one cannot expect definite
results but only provisional ones. The old epistemology was appealing but did not
keep the promise; the new one makes fewer promises but is not automatically more
disappointing because of that.



Chapter 2

Category theory in Algebraic
Topology

The concepts category, functor, and natural transformation were introduced (in
reverse order) during the early 1940s by Samuel Eilenberg and Saunders Mac
Lane, aiming at resolving certain conceptual problems in algebraic topology. Be-
fore explaining in detail the points concerned, it might be useful to develop some
hypotheses. In view of the intention of the category concept, the idea comes to
mind that category theory should have emerged from some study of mappings.
In algebraic topology, there was indeed a strong tendency beginning in the 1920s
to study mappings, as exemplified in the Lefschetz fixed point theorem and the
study of homotopy classes of mappings initiated by Brouwer, Hopf and others.

In fact, the study of mappings was part of the reason to introduce the concept
of homology group (replacing the numerical invariants in original combinatorial
topology78), and actually so because a mapping of one space into another induces
a group homomorphism between the corresponding homology groups while there
is no connection between the numerical invariants of two spaces connected by a
mapping. Another motivation came from the search for a homology theory for
general spaces.

In the first mentioned context, the induced mappings between homology
groups, the connection of the conceptual innovation to categorial concepts is obvi-
ous; actually, one might conjecture (and the folklore history indeed suggests) that
the homology functor was the construction which led Eilenberg and Mac Lane to
introduce the functor concept in general. I will show that it was at least not the

78In the age of numerical invariants, the discipline was labelled combinatorial topology; the
name algebraic topology came into use only with the use of homology groups. This is interesting
since already Poincaré in [1895] used the group concept in topology (namely the fundamental
group). On the change of names for the discipline, see [Volkert 2002, 291] and in particular
[James 1999a], where also an interesting bibliography of the secondary literature concerning the
development of algebraic topology can be found.
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very first example studied by them since they first investigated the functoriality
of the constructions Hom and Ext.

The second context, homology theory for general spaces, led (among other
contexts) to the introduction of the concepts of direct and inverse limits of spaces
and groups. As I will point out, the basic concepts of CT were introduced prin-
cipally in order to study properties that remain valid under the passage to such
limits.

It has often been said that CT served as a language in algebraic topology
in those years, and that its role changed later, notably in the work of Kan and
Grothendieck79. The present chapter aims at providing the background informa-
tion needed in the evaluation of the first part of this thesis, while a conclusive
discussion of the entire thesis (i.e., a comparison of the two alleged stages under
this aspect) is offered in section 3.4.3.2 (where also the references for the men-
tioned quotations can be found). Beyond this, I would like to advance a somewhat
different (not very sensational) thesis according to which the role of CT was much
more in the clarification of concepts than in the solution of problems in the early
years—and this never really changed.

After a short treatment of the mentioned switch from numerical invariants to
homology groups, the chapter contains a historical presentation of the joint work
of Eilenberg and Mac Lane (2.2, 2.3). Concerning this history, many memories of
the protagonists are contained in the literature; for this reason, it will be treated
only roughly in the present chapter. In turn, I will check whether these memories
and the accounts to it presented in the folklore history are correct. Afterwards, I
discuss two particular later works on algebraic topology heavily influenced by CT
(in very different ways, actually), namely [Eilenberg and Steenrod 1952] and [Kan
1958a].

The scope of matters discussed is limited; for instance, homotopy theory (de-
spite the account of Kan’s paper) is barely mentioned. This choice is not meant to
be a judgement of relevance; however, CT was perhaps most visibly and effectively
applied in the chosen situations.

2.1 Homology theory giving rise to category theory

This section is prerequisite to understand the motivations of the introduction of
CT in algebraic topology, which means to understand what was the intended role
of category theory in this respect; the section does not provide an exhaustive
historical account of the introduction of the concept of homology groups but re-
lies largely on the existing secondary literature, especially on [Volkert 2002] and
[McLarty 2006a] which provide more detailed information in many respects.

79See 2.5.2 and chapter 3, respectively.
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2.1.1 Homology groups before Noether and Vietoris

There has been some historical discussion on when and why the concept of ho-
mology group replaced the exclusive use of numerical invariants; see [Volkert 2002,
283ff] and [McLarty 2006a]80, both referring to a corresponding discussion between
Dieudonné and Mac Lane81. One of the results of this discussion was that the con-
cept together with the terminology and essential applications were introduced
independently by Hopf and Vietoris (see 2.1.2.1 and 2.1.3 below, respectively).
However, another point of interest about this history is that the observation that
homology classes form a group appeared in print several times before Vietoris and
Hopf wrote their papers. For instance, [Mac Lane 1978, 11f] points to the first
1921 edition of [Veblen 1931] which notes already (without making great use of
it) that the homology classes modulo p form a group. An even earlier mention,
equally without consequences, can be found, according to [Volkert 2002, 285], in
the 1912 dissertation of Dehn’s student Gieseking, p.25. Even Poincaré used im-
plicitly this group structure (see [McLarty 2006a, 231f]) but refused to speak of
groups in such cases; [Scholz 1980, 313ff] and [Volkert 2002, 87] think that Poincaré
tied the group concept always to the concrete model of substitution groups, while
McLarty tries to show that Poincaré never spoke about groups in cases where
composition is commutative even if such groups happen to be specific substitu-
tion groups [McLarty 2006a, 214]. Vietoris, in a letter cited in [Volkert 2002, 284
Anm.5], speaks about “tacitly known [ . . . ] homology groups (stillschweigend be-
kannten [ . . . ] Homologiegruppen)”.

The question is why Veblen and others did not take the observation as moti-
vation for a change of conceptual bases while Vietoris and Hopf did. The important
historical step was not that the fact became known but that it became regarded
as significant. I will not try to give an exhaustive answer to this question, but will
at least try to present some elements of explanation concerning the motivations
of Hopf and Vietoris in the subsequent sections.

2.1.2 Homology and the study of mappings

As Bill Lawvere told me in private communication, he thinks that the transition
from numerical invariants to homology groups was motivated mainly by the desire
to submit not only spaces but also continuous mappings to an algebraic treatment.
This is clearly a strong thesis which a historian will not accept if no evidence is
provided. Such evidence will be presented in section 2.1.2.1: at least one of the ori-
gins of the concept of homology group is to be found in the discussion of Lefschetz’
fixed point theorem which indeed is concerned with the study of continuous map-
pings; the introduction to [Hopf 1930], reproduced in 2.1.2.1, indirectly stresses
the importance of the study of continuous mappings for the development of the

80[Bollinger 1972] analyzes the history of the concept of homology covering work by Riemann,
Betti, v.Dyck, Poincaré, Dehn /Heegaard, Tietze, Veblen, and Alexander.

81See [Dieudonné 1984], [Mac Lane 1986b] and the review by Dieudonné. (MR 87e:01027)
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methodological apparatus of homology groups. On the other hand, the study of
mappings begins already with the early topological work of Brouwer82: while in
[1911], Brouwer is concerned with homeomorphisms, in [Brouwer 1912] he starts to
study homotopy classes of more general mappings—but obviously without using
homology groups. Hence the thesis has to be modified: apparently there were at
least some problems in the context of mappings which could be treated very nicely
without using homology groups83. In the following sections, I do not try to study
in detail which features of the problems ultimately necessitated the application
of homology groups; I just provide some evidence for the observation that in the
1920s and 1930s there was a strong tendency to study mappings (and to do it with
the help of homology groups).

2.1.2.1 Hopf’s group-theoretical version of Lefschetz’ fixed point formula and
the “algebra of mappings”

In modern language (see e.g. [Brown 1971]), Lefschetz’ theorem says this: Let
f : X → X be a continuous function on a topological space X . One can define
a mapping L : C(X) → Z such that L(f) �= 0 implies that all g which are
homotopic to f have a fixed point. This “Lefschetz number” L is first defined
for free modules in general as the trace of a certain endomorphism of a graded
module. The Lefschetz number of f is then defined as the Lefschetz number of
f∗ (i.e., via the functoriality of homology)84. It was apparently Heinz Hopf who
gave this modern form to the theorem, while Lefschetz himself expressed it in a
different form (without use of homology groups)85.

Actually, it seems that Hopf first started to use homology groups instead
of invariants in a modified proof of his “generalized Euler–Poincaré formula”. He
proved this result first in the old style (in the paper [1929]) but added a note in
print that parts of this paper can be skipped thanks to a new method of proof
using homology groups and exposed in [1928] (the papers actually appeared in
print in reverse order). In this latter paper, Hopf says:

During a course of lectures given in summer 1928 in Göttingen, I was able,
by using group-theoretic concepts, influenced by E. Noether, to make much
more transparent and simple my original proof of the generalization of the
Euler–Poincaré formula86 [Hopf 1928, 5].

This makes us understand that Hopf did not use homology groups before being
asked to do so by Emmy Noether; see also [McLarty 2006a, 227].

82see also [Hopf 1926, 130].
83Brouwer obviously developed his own tools which will not be discussed here; see [McLarty

2006a, 212] and especially [Dieudonné 1989, 167–173] for some information.
84The formula is L(f∗) =

P
(−1)qTr(f∗q); [Spanier 1966, 194f].

85Lefschetz’ original work is [1926, 1927].
86“Meinen ursprünglichen Beweis [der] Verallgemeinerung der Euler–Poincaré schen Formel

konnte ich im Verlauf einer im Sommer 1928 in Göttingen von mir gehaltenen Vorlesung durch
Heranziehung gruppentheoretischer Begriffe unter dem Einfluß von Fräulein E. Noether wesent-
lich durchsichtiger und einfacher gestalten”.
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Now, the generalization of the Euler–Poincaré formula implies Lefschetz’
fixed point theorem. Mac Lane locates the influence of Emmy Noether on Hopf in
a discussion about the proof of this latter theorem:

At one time, perhaps in 1926, [Alexandroff and Hopf] were studying with
some difficulty Lefschetz’ proof of his fixed point theorem. They discussed it
with Emmy Noether, who pointed out that the proof could be better under-
stood by replacing the Betti numbers with the corresponding homology groups
and using the trace of a suitable endomorphism of these groups [Mac Lane
1978, 12].

As evidence for his interpretation, Mac Lane refers to [Alexandroff 1932] and to
the preface of [Alexandroff and Hopf 1935]; probably they discussed both proofs
(Lefschetz’ proof of his fixed point theorem, and Hopf’s proof of his generalized
Euler–Poincaré formula) and threw in homology groups more or less simultane-
ously. Anyway, the modern form of Lefschetz’ theorem (see above) contains the
formula as modified according to the suggestion by Noether. The role of Hopf’s
formula in this modification is indicated by the terminology “Hopf trace formula”
(used in [Spanier 1966, 195], for instance).

Despite the above mentioned historical discussion on the role of Vietoris, the
developments just presented still constitute the exclusive “official” history of the
introduction of the concept of homology group. The editors of [Hopf 1964] think
that [Hopf 1928] presumably was the first publication in which the modern group-
theoretic point of view in homology theory, going back to Noether, was adopted.
Similar statements can be found in [Pontrjagin 1931, 168 n.13] and [James 1999a,
564f]. I will try to explain the neglect of Vietoris when discussing his contributions
below.

The paper [Hopf 1928] does not stand alone among Hopf’s work in those
years when he was mainly concerned with mappings (see 2.1.2.2); in this respect,
the paper [Hopf 1930] is a contribution oriented towards conceptual clarification
while the other papers are rather oriented to problem solution. Let us read some
of Hopf’s strategic remarks contained in this paper:

A unique and continuous (not necessarily uniquely invertible) mapping f
of an n-dimensional manifold M onto an n-dimensional manifold µ yields a
unique mapping of the ring[87] and the fundamental group of the first onto the
ring and the fundamental group of the latter. The totality of the properties
of these group and ring correspondences might be called the algebra of the
mappings of manifolds, whereas one deals with the topology of the mappings
when one does not consider the elements of the group and the ring, but the
points of the two manifolds and the relations installed between them by f .
It is particularly interesting to study the connections between algebra and
topology of a mapping; an example of such a connection is constituted by
the Lefschetz fixed point theorem [[Lefschetz 1926], [Lefschetz 1927]] relating

87This “ring” is obtained by merging the homology groups of the various dimensions into a
single object. Hopf apparently does not think here of an algebraic ring structure.
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the number of fixed points of a mapping of M onto itself—i.e., a topological
property—to the traces of the substitutions to which the homology groups
are submitted—i.e., to algebraic properties88 [Hopf 1930, 71].

Hence, the Lefschetz theorem is given in the Hopf–Noether form here. What is
remarkable further is the idea of functoriality and the distinction between algebra
and topology of mappings.

2.1.2.2 Hopf’s account of the Kn → Sn problem

By “Kn → Sn problem”, I understand the problem to determine the homotopy
classes of mappings from an n-dimensional polyhedron Kn into an n-sphere. This
problem is treated in [Hopf 1933]. (In general, Hopf’s early work is centered around
the study of mappings into spheres Sn, taking up the Brouwerian project to find
homotopy classes in particular cases; see for example [Hopf 1935], [Hopf 1931].)
Hopf solves the problem by studying the effect of mappings on Hn(Kn, Z) and
several Hn(Kn, Z/pZ), hence by manipulation of coefficients89. This work is dis-
cussed in some detail in [Mac Lane 1976a, 6]; I agree with Mac Lane’s view that
Hopf gave here a rather tedious solution of the problem. If one is only interested
in having just one solution of the problem, one can turn now to other problems,
this one settled. But if one also is interested in the clarity of a solution, one will
probably start to clarify concepts beyond the concept of homology group. This has
indeed been done by [Whitney 1937] who simplified Hopf’s solution by the use of
cohomology90; on another level of conceptual clarification, Whitney introduced his

88“Eine eindeutige und stetige (nicht notwendigerweise eindeutig umkehrbare) Abbildung f
einer n-dimensionalen Mannigfaltigkeit M auf eine n-dimensionale Mannigfaltigkeit µ bewirkt
eine eindeutige Abbildung des Ringes und der Fundamentalgruppe der ersteren auf Ring und
Fundamentalgruppe der letzteren. Die Gesamtheit der Eigenschaften dieser Gruppen- und Ring-
beziehungen möge als Algebra der Abbildungen von Mannigfaltigkeiten bezeichnet werden; von
Topologie der Abbildungen wird man sprechen, wenn man nicht die Gruppen- und Ringelemente,
sondern die Punkte der beiden Mannigfaltigkeiten und die durch f zwischen ihnen vermittelten
Beziehungen betrachtet. Es ist von besonderem Interesse, den Zusammenhängen zwischen Alge-
bra und Topologie einer Abbildung nachzugehen; ein Beispiel eines solchen Zusammenhangs ist
der Lefschetzsche Fixpunktsatz [[Lefschetz 1926], [Lefschetz 1927]], der die Fixpunktzahl einer
Abbildung von M auf sich—also eine topologische Eigenschaft—mit den Spuren der Substitutio-
nen, denen die Homologiegruppen unterworfen werden—also mit algebraischen Eigenschaften—
in Verbindung bringt”.

89Hopf was not the only one who used changes of coefficients in the treatment of such prob-
lems; in a similar context, also [Hurewicz 1936a] considers arbitrary abelian groups as groups
of coefficients. Hurewicz intended to compare homotopy classes and “homology classes” (two
morphisms belong to the same class if and only if their induced homomorphisms coincide) of
mappings. Generally, homology is homotopy invariant (to put it in Hurewicz’ terms: if the ho-
motopy classes of two mappings coincide, then the homology classes do so as well); Hurewicz
studies cases in which the converse is true.

90The introduction of the concept of cohomology by Alexander and Kolmogoroff in 1935 (see
[Mac Lane 1978, 12] and [Dieudonné 1989, 78ff]) is an interesting historical subject and moreover
has points in common with the prehistory of category theory (see 2.2.3). However, since there
is already a rather detailed investigation of the history of this concept, namely [Massey 1999]—
interesting information on this history can also be found in [Eilenberg and Steenrod 1952, 48]—,
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tensor product to study the transition to new coefficients in a more general setting
[1938]. Whitney’s work, in turn, suggested to Steenrod and others to investigate
“universal coefficient theorems” leading eventually to CT (2.2.3).

Incidentally, there was a second impulse towards CT by Hopf, resp. by the
general tendency of algebraic topology in the 1930s to study mappings (in partic-
ular mappings to a sphere): obviously inspired by the work of Hopf, [Borsuk and
Eilenberg 1936] tried to find the homotopy classes of mappings S3 \Σ → S2 for a
solenoid Σ (see 2.2.1.1)—with direct effect for the development of CT.

2.1.2.3 An impulse for Algebra: homomorphisms are not always surjective

In the “modern algebra” of Noether and van der Waerden, the term homomorphism
was used only for those mappings between groups (or similar objects) which have
the property (in fact, the additional property according to nowaday’s usage) to
be surjective [van der Waerden 1931, 31]. This usage expressed the fact that one
was mainly interested in sub- and factor groups of a given group (where the em-
beddings of the subgroups were not considered as independent mappings). CT,
however, takes into account that for a deeper understanding of the group concept
it is necessary to consider “all” groups and the transition functions between them.
(compare Mac Lane’s remark: “it is the intent of category theory that this ‘all’ be
taken seriously” 〈#20 p.237〉.) To adopt this point of view, one has to be able to
speak as well about homomorphisms between groups not being factor groups or
subgroups one to another. This amounts to the consideration of mappings which
are not surjective (or injective) as homomorphisms. Hence, it should be analyzed
historically when this shift of interpretation was made.

It seems that this was the case with the early functors of algebraic topol-
ogy (such as, for instance, the transition from spaces to homology groups) since
surjectivity is not preserved by these functors. As [Mac Lane 1988a, 332] puts
it: x �→ e2πix is a surjective mapping of the real line on the circle (regarded as
topological spaces), but the corresponding homomorphism between the homology
groups is not surjective91. As long as homomorphisms between groups came only
from algebra itself, there were apparently no examples of nonsurjective homo-
morphisms imposing themselves. Only the aspect of functors that establishes a
connection between different mathematical disciplines led to a further exhaustion
of the concept of homomorphism.

This problem is discussed in [Pontrjagin 1931]. On p.194, Pontrjagin defines
the concept of direct sequence of homomorphisms92, where the homomorphisms

such an investigation will not be repeated in the present book. In particular, I do not analyze
here in view of which conceptual clarification the concept of cohomology group has actually
been introduced; one can observe, at least, that this concept soon began to play a role in such
clarifications, for instance concerning duality theorems (see Massey’s paper) or just concerning
Hopf’s result in the Kn → Sn problem.

91[Mac Lane 1970, 229] presents the problem in a similar manner.
92This paper actually contains the first definition of a direct limit of groups in the literature. I

will analyze the role of this concept in Pontrjagin’s paper in a separate publication on the history
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shall map a group into another. Pontrjagin feels obliged to explain the distinction
between mappings “into” and mappings “onto” (“in” and “auf” in German), and
he credits van der Waerden with the introduction of this terminology. Unfortu-
nately, Pontrjagin does not give any explicit reference to a publication of van der
Waerden. The terminology “Abbildung auf” apparently is absent from [van der
Waerden 1931]; however, the content of the distinction between “auf” and “in”,
without the wording, can be found on p.5. Incidentally, in this book on Algebra,
homomorphisms are always supposed to be surjective, thus lending support to
the overall claim (see above). There is also a paper on combinatorial topology by
van der Waerden, [1930], which provides a stocktaking of the state of the art of
1930 in the theory of manifolds; however, there is no mention of mappings and
homology theory in this paper. Since in [van der Waerden 1930, 132] evidence is
provided that there has been personal communication between van der Waerden
and Pontrjagin, I suppose that Pontrjagin simply alluded to such communication.

It is easily seen that Pontrjagin for his purpose needed sequences of homo-
morphisms whose members are allowed to be mappings “in” (and not mappings
“auf” throughout) since he was interested in sequences of homomorphisms for Betti
groups (p.198f). However, his explicit indication of how he uses the term “homo-
morphism” suggests that this usage was not the commonly accepted one at that
time. Hence, it seems indeed to be the case that “homomorphism” by then meant
“usually” (i.e., in Algebra) “surjective homomorphism”93.

This means that a functorial construction does not necessarily pick out exclu-
sively those special cases of constructions in the range category which are usually
considered when one studies this range category with its proper internal problems.
The criterion of choice depends on the context in which one works.

[Freudenthal 1937, 150f] considers sequences of spaces Rn with continuous
functions fn+1

n such that fn+1
n Rn+1 ⊂ Rn. We would call such a sequence an

inverse sequence of topological spaces; Freudenthal, however, speaks about a “Rn-
adische Folge”—and explicitly highlights the special case that the fn+1

n are surjec-
tive (“Abbildungen auf”) by calling the sequence an “auf-Rn-adische Folge” in this
case. Hence, he obviously encompasses the more general situation. The problem is
also mentioned in [Eilenberg and Mac Lane 1942b].

2.1.2.4 The use of the arrow symbol

The problem considered here is the following: when was the symbolism �X → Y �
for a mapping or more generally for a morphism between appropriate objects X ,
Y introduced? Such questions in the history of notation might be considered as
not being extremely relevant since mathematical notations are often thought of

of direct and inverse limits.
93[McLarty 1990, 355] indicates that [Seifert and Threlfall 1934] is the earliest source for the

concept of homomorphism in general, while group theorists kept the former usage up to the
1950s. Indeed, [Seifert and Threlfall 1934, 297] has the now usual definition; like Pontrjagin,
they distinguish “in” and “auf”.
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as being established by convention. This attitude may be influenced by naive
formalism which says that mathematical formulas are (composed of) meaningless
signs. But this position gives no satisfactory answer to the question (in the spirit
of the philosophical orientations of the present book) why precisely this or that
convention about symbolism was adopted and no other equally possible one. In
the present case, there are two particular reasons to be interested in the question:

• on the one hand, we will see in section 5.4.3 that the chosen symbolism
(arrows) was not irrelevant to the development of category theory;

• on the other hand, there is an official history of the symbolism which turns
out to be wrong or at least incomplete.

This official history reads as follows: [Mac Lane 1988a, 333] discusses the case that
X and Y denote topological spaces and f a continuous mapping between them;
he credits [Hurewicz and Steenrod 1941] with being the earliest published source.
In [Mac Lane 1971b, 29], he presents the matter somewhat differently:

The fundamental idea of representing a function by an arrow first ap-
peared in topology about 1940, probably in papers or lectures by W. Hurewicz
on relative homotopy groups; c.f. [[Hurewicz 1941]].

A similar remark can be found in [Mac Lane 1976a, 33] (see below). In correspon-
dence written towards the end of his life (and contained in his records at Columbia
University), Eilenberg credits [Hurewicz 1936b, 220] with being the first published
source94. Interestingly, the arrow symbolism is reserved there for homomorphisms
while for continuous mappings the following symbolism is used: �f ε Y X�.

This official history skips the appearance of the following in Pontrjagin’s 1931
paper (p.200):

βi ← Bq ← βj ← Bs

The βi, Bq, βj , Bs are groups; actually, they are Betti groups throughout: those
denoted by B belong to the projection spectrum in the sense of [Alexandroff
1929], those denoted by β to the open complements of polyhedric neighbourhoods
of the closed set F whose homology group is to be calculated. The dimensions are
induced by what is to be proved, namely that two sequences of homomorphisms
are equivalent95.

Now, there is another use of an arrow symbolism in Pontrjagin’s paper under
the heading “geometrische Hilfsbetrachtungen” on p.182ff; there, the arrow sym-
bolizes a certain relation between two simplexes (cf. in particular p.184), namely
the relation “x ist Rand von y”. At the beginning of these “geometrische Hilfsbe-
trachtungen”, Pontrjagin on p.181 in note 25 indicates the literature concerning

94An even earlier but unpublished use (for group homomorphisms) is probably contained in
Hurewicz’ letter to Eilenberg dated December 23, 1935 (however, the reading of this date is
uncertain—especially of the year). A thorough analysis of this letter (written in polish) should
disclose its relation to [Hurewicz 1936b].

95I do not provide here a detailed description of what is meant by this terminology. This will
be done in my publication on direct and inverse limits.
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the methods used96. Among this literature, the notation is used in [van Kampen
1929] (p.14 and passim) and [Alexander 1926]97:

[ . . . ] we use the notation
K → K′

to indicate that [the complex] K is bounded by K′[original note: Poincaré used
the congruence symbol ≡ in place of the arrow →. The notation here adopted
is perhaps less liable to confusion, and has the advantage of emphasizing the
unsymmetrical character of the relation of bounding.] [Alexander 1926, 312].

The last remark indicates clearly Alexander’s conviction that a notation is not
completely arbitrary but if possible has to provide one with an intuitive grasp
of what is denoted. Alexander does not say where precisely Poincaré introduced
the notation �≡�. Unfortunately, Poincaré uses this symbolism not in a coherent
manner; in [Poincaré 1895, 232], one reads “I put the sign ≡ between two edges (or
two vertices) in order to express that they belong to one and the same cycle”98; on
the preceding page, the sign seems to have a different meaning, and again so on
p.244. Ultimately, Alexander seems to rely on a very synthetic reading of Poincaré
here since the latter never speaks about bord in connection with the sign; the sign
is most often used for congruence and implies then that a face is homologous to
zero (that means, each cycle is a boundary).

The relation between Pontrjagin’s two uses of the notation remains uncertain
since the arrows in βi ← Bq ← βj ← Bs do not symbolize homomorphisms
induced by boundary operators (the dimensions do not match; the sequence is no
homology sequence in the usual sense of the word). Nevertheless, it is appealing
to think that Pontrjagin transferred the symbolism from the complexes to their
homology groups. This would explain, at least, why he did not use the notation
in complete generality: he does not write φm : Um → Um+1 in his definition of
sequences of homomorphisms for abstract groups Um!

Mayer in [Mayer 1929] (a paper which will be discussed in more detail in 2.1.4)
is especially interested in constructing new “Komplexringe” (chain complexes) from
given ones and in studying what happens to the homology groups under such
constructions. On p.33, in particular, he assigns cycles of one Komplexring to
those of another, he explicitly calls this an assignment (“Zuordnung”) and he uses
the sign �→� as we would use the sign � �→� today. Despite the presence of the
boundary operator (denoted R(·) by Mayer; think of the German “Rand”) in the
construction, no confusion with a boundary relation is possible since the cycles
belong to different complexes (and cycles have boundary zero, after all). However,
Mayer does not speak about functions here since his assignments are not unique,
as he explicitly stresses.

96[Alexander 1926, 1930], [Lefschetz 1926], [van Kampen 1929], and [van der Waerden 1930].
97It is also used in [Čech 1932, 156] which is obviously not cited by Pontrjagin. [van der

Waerden 1930] only presents an overview of the state of the art of the discipline and does not
use any involved notation.

98“j’ai mis le signe ≡ entre deux arête[s] (ou deux sommets) pour exprimer qu’elles font partie
d’un même cycle”.
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Actually, the use of sign �→� in place of our � �→� is not restricted to algebraic
topology, and it is older than Mayer’s paper: it can be found both in [Hecke 1923,
18] and in [Weyl 1913, 32]99.

[Steenrod 1936] uses the notation for continuous mappings between topolog-
ical spaces on p.664 and for homomorphisms on p.683f. In France, the first use of
the symbolism I was able to find is only in [Leray 1950, 96ff]; [Gray 1979, 6] thinks
that this was indeed the moment when the French community became acquainted
with it. Leray uses diagrams to display clearly how different homomorphisms are
to be composed.

2.1.3 Homology theory for general spaces
Another motivation for the introduction of the concept of homology group (and
of categorial concepts), besides the study of mappings, came from the search for
a homology theory for general topological spaces. The technical matters in the
history of the extension of homology theory to general topological spaces are very
nicely described in [Dieudonné 1989, 68ff]; however, something more should be
said about the role played by this extension in the transition to algebraic methods
in combinatorial topology.

It was Leopold Vietoris who, in his paper [1927], introduced for the first time
the concept of homology group in this context ([McLarty 2006a, 212] provides
evidence that Vietoris probably was under the influence of Emmy Noether and
L.E.J. Brouwer). The main problem in building a homology theory for general
topological spaces is the following: if one is no longer restricted to manifolds,
the homology groups cease to be necessarily finitely generated, which makes the
traditional numerical invariants meaningless [Volkert 2002, 284]. This situation
makes it clearly necessary to pass over to the group concept. Volkert quotes from a
letter by Vietoris in which these ideas are discussed more closely; Volkert concludes
that Vietoris’ motives are not to be looked for in the theory of manifolds or
more generally in traditional combinatorial topology, which is not astonishing,
after all, since in this context the traditional view was quite useful. This may
perhaps explain—at least if manifolds were the exclusive subject of study then—
that Vietoris’ authorship has at first been neglected and is still neglected to some
extent (see 2.1.1). Alexandroff, in his Jahrbuch review100 of Vietoris’ paper, does
not mention the use of groups101.

Vietoris’ work had several effects for the development of category theory, the
most important of which is the emergence of Čech theory. Eilenberg and Steenrod
present the history of this theory as follows:

99In the 1955 revised edition of Weyl’s book, however, p.36 contains a use of arrows for map-
pings; but this is not much of a surprise around 1955. In the same book, Weyl continues to use
arrows between elements on p.44. He uses them in this way also in [Weyl 1931, 101].
100JFM 53, S.552.
101see also [Mac Lane 1978, 11f]; incidentally, Mac Lane suggests that Alexandroff and Hopf

investigated Lefschetz’ proof already in 1926. For more details on chronology and mutual influ-
ences, see [McLarty 2006a, 224–227].
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The first definition of homology groups of the Čech type was made by
[[Vietoris 1927]]. He restricted himself to compact metric spaces and used a
specific metric to define his cycles. About the same time [[Alexandroff 1929]]
introduced the concept of approximating a compact metric space by an in-
verse sequence of complexes (called: a projection spectrum), and successfully
defined Betti numbers. [[Pontrjagin 1931]] added to this the notion of an in-
verse sequence of groups, and obtained homology groups. [[Čech 1932]] first
defined the nerve of a finite covering by open sets, and used such complexes
as approximations to a space. By using inverse systems instead of sequences,
he defined homology groups of arbitrary spaces [Eilenberg and Steenrod 1952,
253f].

(It is to be noted that according to [Dieudonné 1989, 73], Čech had no knowledge
of Pontrjagin’s work when writing his paper102. It is to be noted further that
while nowadays one uses rather Čech cohomology, in Čech’s original paper, only
homology is discussed since the concept of cohomology group became introduced
only afterwards (see n.90). In 2.3.3, I make some remarks in order to explain why
nowadays cohomology is stressed.)

In what way did these developments motivate the introduction of category
theory? One the one hand, here again, just as in the case of the treatment of con-
tinuous mappings between manifolds by homological methods (2.1.2), the question
arises in what way continuous mappings between spaces correspond to homomor-
phisms between homology groups. However, there is another question, namely that
of how to model a “passage to the limit” for the objects under consideration. In
the general situation, homology cannot immediately be calculated by the usual
methods. The remedy developed consisted in trying to describe the space under
consideration in some manner as a limit case of spaces in which a method is avail-
able. On the level of groups, this led to the concept of “limit group”. The question
of induced homomorphisms amounts now to the question about the circumstances
under which homomorphisms between such limit groups occur. This necessitates
somewhat more “theory” than in the situation of complexes.

I will not discuss here the introduction and further development of this limit
concept because this history is very complicated and would lead us too far from our
present purpose—and has consequently been reserved for a separate publication.
Anyway, the results of this development were the now usual concepts of direct
(or inductive) and inverse (or projective) limit. Expressed in modern language,
the existence of homomorphisms between limits turned out to be related to the
functoriality of the constructions involved. However, this terminology was not yet
adopted in the period under consideration here.

102I will not discuss in detail the contributions of Alexandroff, Pontrjagin, and Čech here. While
such a gap would not be tolerable in an account of the history of homology theory for general
spaces aiming at completeness, the account given here will be sufficient for a presentation of the
situation of Eilenberg and Mac Lane 1942. For later improvements of Vietoris’ approach, see
n.103.
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2.1.4 The work of Walther Mayer on chain complexes

Also the work of Vietoris’ student Walther Mayer had an effect on the develop-
ment of CT. To begin with, Mayer introduced the modern notion of chain com-
plex. In [1929, 2], he defines the notion of “Komplexring” which amounts to a
chain complex composed of free abelian groups. Mayer is especially interested in
constructing new “Komplexringe” from given ones and in studying what happens
to the homology groups under such constructions. In this context, he implicitly
studies homomorphisms between the groups induced by inclusions between com-
plexes (see also [Volkert 2002, 284]), arriving at a preliminary version of what is
now called the Mayer–Vietoris sequence. It is for this result that his work today
is mostly remembered.

Later in [1938], Mayer drops the condition that the groups be free, but simply
studies “group systems” (“Gruppensysteme”) which are chain complexes composed
of arbitrary abelian groups. These concepts are crucial in many later applications
of CT, and their role as well as the reception of Mayer’s work in this connection
will be discussed in section 5.1.2.

2.2 Eilenberg and Mac Lane: Group extensions and
homology

Preliminary remark concerning notation. For the convenience of the reader ac-
customed to the now usual notation, I modified the original notation of [Eilenberg
and Mac Lane 1942a]. This concerns two main points:

• Eilenberg and Mac Lane used indexes for cohomology and exponents for
homology; the current usage (as adopted here, even in quotations for sake of
unification) is converse, but such an exchange does not seem to make us lose
any relevant historical information.

• Another exchange which occured in the meantime, however, is historically
important: the arguments of the functor Ext appear in [1942a] in converse
order, compared to the now usual notation. While the notation employed by
Eilenberg and Mac Lane arose from the then common uses of Ext, the later
standard use of this functor (which became standard through the results of
Eilenberg and Mac Lane, after all) suggests an exchange of order. See 2.2.1.3.

2.2.1 The respective works of Eilenberg and Mac Lane giving way
to the collaboration

Around the beginning of the 1940s, Samuel Eilenberg and Saunders Mac Lane
were working in (at first glance) very different domains: Eilenberg was interested
in questions of algebraic topology, Mac Lane in algebraic number theory. The
impulse for their collaboration was the observation of unexpected overlappings
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of both domains. (And it is a “slogan” of later CT that quite different domains
may be related in an unexpected manner.) In what follows I shall expose shortly
Eilenberg’s and Mac Lane’s respective preparatory work.

2.2.1.1 Eilenberg: the homology of the solenoid

Eilenberg’s point of departure was a problem in the study of mappings of spheres
following Hopf; see 2.1.2.2. In [1993, 2], Eilenberg points out how he came into
contact with the topological problem solved in [Eilenberg and Mac Lane 1942a]:

The main problem [in [Borsuk and Eilenberg 1936]] was the following:
given a solenoid Σ in S3, how big is the set S of homotopy classes of maps f :
S3\Σ → S2? In 1938 [ . . . ] I established that the set S in question is equipotent
to the appropriately defined homology group H1(S

3 \Σ, Z) [[Eilenberg 1940]].
At this point the problem was taken up independently by Norman Steen-

rod [[1940]]. With the aid of “regular cycles”[103] he computed the group
H1(S

3 \ Σ, Z).

Solenoids are topological spaces of a certain type; for a definition, see [Eilenberg
and Steenrod 1952, 230] or [Lefschetz 1942, 31]. Mac Lane describes the p-adic
solenoid as a topological group that is the inverse limit of a sequence of circles
[ . . . ] each one wrapped p times smoothly around the previous one [1988b, 30].

2.2.1.2 Mac Lane: group extensions and class field theory

In the 1930s, the concept of an extension E of an abelian group G by another
abelian group H was introduced in abstract algebra; namely, E is such an extension
if and only if G ⊂ E and H = E/G hold (the literature mentioned by Eilenberg
and Mac Lane104 is concerned in most cases with the more general situation that
H is not automatically considered as abelian and G as not necessarily belonging
to the center of H). In particular, one observed that all extensions taken together
in turn form a group Ext(H, G).

103On p.833 of [Steenrod 1940], some problems with Vietoris cycles are pointed out, and two
possible reasons for the problems are discussed, namely “(1) the condition that a cycle converge
is too strong, so that there are too few cycles, (2) the condition that a convergent cycle bound is
too weak, so that too many cycles bound.” Steenrod explains that Pontrjagin in [1934a] gave a
solution for the first problem by taking compact coefficients, thus imposing convergence; Steenrod
himself proposes a new type of cycles (regular cycles) as solution of the second problem. [Massey
1999, 581f] points out how duality theory together with the concept of cohomology group makes it
possible to avoid the consideration of compact coefficients in homology (since Hk(X, Char(G)) ∼=
Char(Hk(X, G))). Since Pontrjagin had not yet the concept of cohomology when writing [1934a],
it is not astonishing that he did not use this argument; however, [Eilenberg and Steenrod 1952]
in chapter IX did not do so either, which was commented by Cartan in his review of this book
in Mathematical reviews (MR 14:398b).
104[1942a] provides some historical information concerning the concept of group extensions. In

note 12 on p.767, they say that the concept had been studied in the papers [Baer 1934], [Hall
1938], [Turing 1938], [Zassenhaus 1937] “and elsewhere”. The list is to be completed by [Schreier
1926] where the concept apparently is introduced and discussed for the first time.
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Mac Lane recalls in [1988b, 30] that in joint work with O.F.G. Schilling
on group extensions (relying on the work by Otto Schreier and Reinhold Baer;
[MacLane and Schilling 1941]) he calculated the group Ext(H, G) for certain G, H ;
his interest in this question came from the theory of class fields:

[ . . . ] the class field theory for a normal extension N of a base field K had
used group extensions of the multiplicative group of N by the Galois group
G acting on N . In this connection, Mac Lane had studied group extensions
more generally, and in particular the group Ext(G, A) of all abelian group
extensions of the group A by the group G. He had calculated a particular case
which seemed of interest: That in which G is the abelian group generated by
the list of elements an, where an+1 = pan for a prime p [Mac Lane 1989, 1].

In the notation of [1942a], the group discussed here is Ext(Σ∗, I) where I de-
notes the abelian group (Z, +) and Σ∗ the group G of the example given in the
quotation105.

2.2.1.3 The order of arguments of the functor Ext

The reader may have noted that [Mac Lane 1989] speaks about “the group Ext(G, A)
of all abelian group extensions of the group A by the group G”; however, the
wording of [1942a, 759, 770] is “the group of group extensions of G by H [ . . . ]
Ext(G, H)”. That means that the order of the arguments (so to say, of the extend-
ing and the extended group) was exchanged in the meantime.

Now, one could remark that such differences in notation occur frequently in
early stages of the development of concepts before a generally accepted usage is
established. For the authors writing in the 1930s and 1940s, it may have been nat-
ural to denote the group of all extensions of a group G by a group H as Ext(G, H)
and not as Ext(H, G). In the further development of the theory, however, a good
reason to write it the other way round came to the fore: Ext = Ext1 is only
part of a family of functors connected by a long exact sequence, namely the right
derived106 functor of Hom. And it is natural to write Hom(A, B) for the set of
morphisms from A to B, and not Hom(B, A). But by this and the exact sequence
connecting Hom = Ext0 with the higher Extn, the order of arguments is fixed in
the now usual way.

This observation notwithstanding, the historian has nevertheless to ask whether
this reconstruction of the history of notation from a systematic point of view is in
agreement with the history as it actually occurred, which means whether the nota-
tion was really changed for the indicated reason. For instance, already [Mac Lane
1950, 487] uses the modern notation—but did he already foresee then what later
would become the theory of derived functors? What he did certainly know around
this time, at least, was that Hom and Ext in particular are related in an impor-
tant manner, and consequently he might have wished to express this relationship
in notation.
105Mac Lane gives further indications concerning his work in this direction in [1976b, 135].
106See 3.1.1.3.
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2.2.2 The meeting
When Saunders Mac Lane lectured in 1940 at the University of Michigan

on group extensions one of the groups appearing on the blackboard was ex-
actly the group calculated by Steenrod [H1(S

3 \ Σ, Z)]. I recognized it and
spoke about it to Mac Lane. The result was the joint paper [[1942a]]. [Eilen-
berg 1993, 2]

[Mac Lane] had calculated a particular case [of Ext(G, A)] which seemed
of interest: That in which G is the abelian group generated by the list of
elements an, where an+1 = pan for a prime p. After a lecture by Mac Lane on
this calculation, Eilenberg pointed out that the calculation closely resembled
that for the regular cycles of the p-adic solenoid [ . . . ] [Mac Lane 1989, 1].

Similar accounts can be found in [Mac Lane 1976b, 135f], [Mac Lane 1988a, 333]
or [Mac Lane 1988b, 30]. The observation made by Eilenberg was developed into
the central idea of [1942a]:

The thesis of this paper is that the theory of group extensions forms a
natural and powerful tool in the study of homologies in infinite complexes and
topological spaces. Even in the simple and familiar case of finite complexes
the results obtained are finer than the existing ones [1942a, 759].

I will stress throughout this book that this thesis was confirmed to an astonish-
ing degree by the further developments107. Eilenberg must have observed in Mac
Lane’s talk the following things:

• Mac Lane’s Σ∗ is the group of characters of Σ (which is in turn a topological
group since it is an inverse limit of certain topological groups; via Pontrjagin
duality108, one obtains the group of characters as the direct limit of the dual
system of groups).

107But I will not analyze historically the interaction of the theory of group extensions with
Eilenberg’s particular purpose. Such an analysis would have to comprise, for instance, an answer
to the question to what degree this theory influenced the conceptual bases of the joint work by
Eilenberg and Mac Lane; in particular, it would be interesting whether Mac Lane’s “more general
study of group extensions” brought about new results in this theory (and not only calculations
of particular examples) decisive for applicability in the topological context. For the answering
of this question it would be necessary to compare in detail the part of [1942a] devoted to the
elaboration of this theory with earlier work in the field of group extensions; but such a comparison
would lead us too far away from the main subject of the present book. One possible direction of
work is indicated in n.114.
108In the following presentation, I pay little attention to the intersection points of the argumen-

tation of Eilenberg and Mac Lane on the one hand and Pontrjagin’s duality theory on the other
hand; these intersection points in my opinion are not central for the understanding of Eilen-
berg and Mac Lane’s motivation to introduce categorial concepts. This said, it is an interesting
question to what extent Pontrjagin’s introduction of the duality theory of topological groups in
[1934b] was motivated by applications in algebraic topology (for example by the search for a
better formulation of duality theorems; see [Massey 1999]). On p.361 of his paper, Pontrjagin
says merely: “The first chapter of this paper is devoted to the study of the connection between [a
discrete commutative group and its character group]. It is also written so as to be applicable to
combinatorial topology” . A discussion of such applications can be found in [Lefschetz 1942, 63ff];
for more details about the duality theory, see section 2.3.4.2.
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• Ext(Σ∗, I) ∼= H1(S3 − Σ, I)

Let me stress that it is not unexpected that the solenoid somehow relates to p-adic
numbers. Actually, van Dantzig in his construction of the solenoid [1930] explicitly
relies on Hensel’s work. What is unexpected here is that there is a relation between
the group of group extensions and homology. The joint paper resulting from the
tentatives to “explain” this observation was the beginning of a long and fruitful
collaboration109.

2.2.3 The results of Eilenberg and Mac Lane and universal coefficient
theorems

In what precedes, it is to be understood that H1(S3 − Σ, I) is a group calculated
with respect to some infinite cycles. In Eilenberg and Mac Lane’s setting, a complex
can have infinitely many cells σq

i (i index, q dimension) (p.799); a q-chain is, as
usual, a formal infinite sum

∑
i giσ

q
i with gi in the group of coefficients; for a

finite chain, only finitely many gi’s are non-zero (p.800). Steenrod tried in [1940]
to compute the group H1(S3 − Σ, I) using “regular cycles” (see n.103 above and
p.824f in [1942a]) which are infinite cycles of a certain type. The result of EM really
improves the situation since they arrive at an expression of that very homology
group using finite cycles only. Their theorem 33.1 (p.808) reads:

For a star finite complex K the homology group Hq(K, G) of infinite
cycles with coefficients in a generalized topological group G can be expressed
in terms of the integral cohomology groups Hq [ . . . ] and Hq+1 [ . . . ] of finite
cocycles. [ . . . ] More explicitly [ . . . ]

Qq(K, G) is a direct factor of Hq(K, G).

Qq(K, G) ∼= Ext(Hq+1, G).

Hq(K, G)/Qq(K, G) ∼= Hom(Hq , G).

The precise definition of Qq(K, G) is not so important here; just take the charac-
terization of the second line110. What is important is that Hq means homology for
infinite cycles and Hq means cohomology for finite cycles. In my opinion, the use-
fulness of this theorem does not really become clear without knowing with respect
to which type of cycles the groups are calculated.

It is strange that in the 1945 paper any reference to finiteness disappears!
What is stressed instead are so-called “universal coefficient theorems”:
109[Dieudonné 1989, 97f] gives a brief account of the early Eilenberg and Mac Lane papers.
110By the way: They do not explicitly call it an exact sequence, but what you have is

0 → Ext(Hq+1, G) → Hq(K, G) → Hom(Hq(K, I), G) → 0.

For some remarks concerning the history of the concept of exact sequence, see n.170.
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The theorems of this name express the cohomology groups of a complex,
for an arbitrary coefficient group, in terms of the integral homology groups
and the coefficient group itself [Eilenberg and Mac Lane 1945, 288].

Interestingly, compared to theorem 33.1, the account of universal coefficient theo-
rems given in [Eilenberg and Mac Lane 1945] does exchange the role of homology
and cohomology, and Mac Lane does much the same thing in [1976a] where he
claims implicitly that the motivation of [1942a] had been this kind of universal
coefficient theorem, and he correspondingly traces back the origin of the problem
to conceptual work concerning Hopf’s result (see 2.1.2.2). But this may be due to
an effort to present his own mathematical work as a coherent line of development.
The search for maximum coherence is not always a good historical methodol-
ogy; I will discuss this point to some extent in the next section. In [1942a], it is
only marginally noted (§35) that universal coefficient theorems of the mentioned
kind are obtained as corollaries of the main results (by Pontrjagin duality); by no
means are these theorems presented as the main matter of the whole paper. In the
introduction, they are not even mentioned.

A further difference between 1942 and 1945 is that in the latter paper every-
thing is done for chain complexes in the sense of Mayer while the former employs
abstract cell complexes in the sense of Tucker (p.799; compare section 5.1.2 for
the definition of the different concepts mentioned).

2.2.4 Excursus: the problem of universal coefficients
While Mac Lane’s historical account of universal coefficient theorems may be some-
what simplifying, it is worth discussion. Mac Lane traces back the origins of the
question of universal coefficients to Hopf’s mapping problem; he is sketching a
whole tower of conceptual clarifications taking place in the sequel and leading to
the question of universal coefficients:

Hopf’s homotopy classification theorem for maps g : Kn → Sn in terms
of the homology of the polyhedron Kn had been reformulated by Whitney in
terms of the cohomology of Kn. This suggested, to Steenrod and others, that
cohomology must somehow be expressible in terms of homology [Mac Lane
1976a, 7].

It is not clear what work of Steenrod is alluded to; I will discuss this in a minute.
But for the moment, let us continue to read Mac Lane:

Since cochains of a complex C are by definition homomorphisms of chains
f : Cn → A, each cocycle (f with δf = 0) is a homomorphism of cycles, and
this assignment yields a “natural” homomorphism

Hn(C, A) → Hom(Hn(C), A) (∗)
For A (the additive group of) a field, this is an isomorphism, but not for

more general A’s. Hence arose the problems of expressing the whole coho-
mology group of the complex C in terms of this homomorphism and other
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constructions; it was called the problem of “universal coefficients” because it
was intended that the solution be given by saying that the cohomology is
determined by giving the homology Hn(C, G) for a specified list of coefficient
groups G, called the “universal” coefficients, perhaps G = Z and all the groups
Z/pZ.

The final solution turned out to have a different conceptual structure.
First, [ . . . ] the homomorphism (∗) is onto, so the problem is essentially that
of finding its kernel. This was done in the first joint Eilenberg and Mac Lane
paper [[1942a]] which showed that this kernel could be expressed as the group
Ext(Hn−1(C), A) [ . . . ] [ibid.].

Here, Hn−1(C) is integral homology. All this leads, according to Mac Lane, to an
expression of cohomology as a direct sum:

Hn(C, A) = Ext(Hn−1(C), A) ⊕ Hom(Hn(C), A).

Is it bold to suppose that when reading again the 1942 paper around 1975, Mac
Lane just forgot about the fact that indices and exponents had been exchanged
in the meantime? While the expression cited by Mac Lane is implicitly contained
in [1942a], it is at least not easily seen to be so, let alone exposed as the central
motivation of this paper.

Mac Lane gives no indication which work of Steenrod’s is meant, or whether
there is meant any published work at all. The two papers cited on my reference
list have different aims.

• True, [Steenrod 1936] concerns the problem of “universal coefficients”—but
Steenrod gives to this problem a formulation different from Mac Lane’s.
Steenrod points out that the problem goes back to [Alexandroff 1935] who
(in a list of open problems at the end of the paper; p.34) asks

Does there exist a field of coefficients I0 having the following prop-
erty: for any closed point set F and the Abelian Group I, the Betti
group Br(F, I) (of F with respect to I) can be expressed by means of
Br(F, I0) (and the group I itself)?

Alexandroff conjectures that for a compact metric space, R mod 1 might be
such an I0

111. Steenrod in [1936] proves Alexandroff’s conjecture and speaks
(unlike Alexandroff) about cohomology groups as well (calling them “dual
homology groups”). However, Steenrod makes apparently no attempt here
to express cohomology through homology (just like Alexandroff speaks only
about expressing Betti groups through other Betti groups); he notes simply
that via Pontrjagin duality one can use cohomology with respect to Z in place
of homology with respect to R mod 1—and this fact, according to Steenrod,
“constitutes a strong argument for the future exclusive use of [cohomology]”.
Finally, he points out on p.691f how an attempt to transfer his results to

111The term “field” is not employed in its technical sense here, since Alexandroff picks out the
integers as a solution in a special case.
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the case of infinite complexes could look (thus, such a transfer could be the
progress made in [Eilenberg and Mac Lane 1942a] in comparison to [Steenrod
1936]).

• in [Steenrod 1940], the problem of universal coefficients is not at issue. Steen-
rod proposes a new type of cycles as solution of some problem with Vietoris
cycles; compare n.103.

Hence, at least in these two papers by Steenrod, there is no trace of the intention
to express cohomology through homology.

2.2.5 Passage to the limit and “naturality”

Eilenberg and Mac Lane next wanted to generalize their results to general spaces.
Homology groups for a general space X are defined thus (following Čech)112: take
an open covering Uα of X ; this will give you a complex called the nerve Nα of
the covering. Transition to a finer covering Uβ corresponds to a homomorphism
Hq(Nβ , G) → Hq(Nα, G). Since coverings form a directed set113 with respect to
the ordering relation “finer”, one can form the inverse limit lim←−Hq(Nα, G) (I do
not discuss here why, and under what conditions, this is a topological invariant of
the space). So if one wants to transfer the result for complexes to spaces, one needs
to prove that the isomorphisms obtained can be lifted to the limit. As Eilenberg
and Mac Lane explain, this works only partly:

The results obtained for a general space are not as complete as those for
complexes, partly because the limit of a set of direct sums apparently need
not be a direct sum, and partly because “Lim” and “Ext” do not permute, so
that [a] group Ext∗ is requisite [1942a, 814].

In our analysis of the way in which this enterprise of Eilenberg and Mac Lane gave
rise to categorial concepts, it is especially the second mentioned problem which
will be of importance. To understand why, we should first consider when precisely
they felt a need to introduce a new definition, that of a natural homomorphism.

Let F, F ′ be free abelian groups, T : F ′ → F a homomorphism, R, R′ sub-
groups of F, F ′ respectively with T (R′) ⊂ R. Eilenberg and Mac Lane show that
there are surjective homomorphisms η : Hom(R, G) → Ext(F/R, G) and η′ corre-
spondingly114 (theorem 10.1). The next theorem is motivated as follows:

112Some remarks concerning the history and motivation of Čech theory are made in section 2.1.3.
In [1932], Čech had not yet expressed his theory in terms of direct or inverse limits of groups in
general but explained on the level of the cycles the effect of a refinement of the covering.
113For the notion of directed set and inverse limit, compare the next section.
114It is perhaps this theorem that [Mac Lane 1976a, 8] has in mind when saying that [1942a]

was decisive for the development of the method of derived functors. For beyond proving theorem
33.1, Eilenberg and Mac Lane worked out how Ext(H, G) can be obtained from a representation
of H as quotient of a free group and a subgroup—a precursor of projective resolutions, see 3.1.1.3.
Historically, it should be investigated whether this result is due to Eilenberg and Mac Lane or
rather was already known to Mac Lane’s forerunners in the theory of group extensions.
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The basic homomorphism η [ . . . ] mapping elements [ . . . ] of Hom{R, G}
into [elements of Ext(F/R, G)] is a “natural” one. Specifically, this means that
the application of η “commutes” with the application of any homomorphism
T to the free group F and its subgroup R. To state this more precisely, we
need to consider first the homomorphisms which T induces on the groups
Hom{R, G} and Ext{H,G} [p.777].

In modern language, they are describing how Hom and Ext behave as functors.
Then, in theorem 12.1, they give what was later called a commutative diagram
(they call it “figure”; I changed some notation):

Hom(R, G)
η−−−−→ Ext(F/R, G)

Hom(T )

⏐⏐�
⏐⏐�Ext(T )

Hom(R′, G)
η′

−−−−→ Ext(F ′/R′, G)

We will see in the next section why this commutativity is important for the passage
to the limit. Theorem 12.1 applies in the homological situation since groups of
chains (or cochains) of complexes K, K ′ are free abelian and one can take for
T homomorphisms Cq(K ′, G) → Cq(K, G). (“chain transformation”). By these
means, they show that the isomorphisms in the universal coefficient theorem for
complexes commute with a chain transformation. This will be important to have
theorem 33.1 at least preserved under such transformations (and that is exactly
what is going on when one passes from the nerve of one covering to the nerve of
a finer covering, that is at each step of the limiting process).

This way, Čech groups can at least be expressed as limits of the expressions
of the form given in theorem 33.1. But if one insists on expressing the Čech groups
themselves through Hom and Ext, one has to investigate whether Hom and Ext
commute with limits. In this connection, we can finally see explicitly the role of
naturality for homomorphisms in the limit, and moreover that Eilenberg and Mac
Lane in the present context are only interested in isomorphisms in the limit. More
precisely, they ask under which conditions formulas of the type

Ext(lim−→Tα, G) ∼= lim←−Ext(Tα, G)

are valid—for Hom in place of Ext, this is generally the case (§21). For Ext, the
validity of such a formula is tied to special conditions on G and Tα—conditions
of partly algebraic, partly topological nature which I will skip here115. Moreover,
the proof depends again on some “naturality” conditions imposed on the isomor-
phisms. The argument runs as follows (§22): theorem 17.2 asserted that, under
the mentioned conditions on G and Tα, the following groups are isomorphic:

Ext(Tα, G) ∼= Hom(Tα, G′) (∗)
115When these conditions are not fulfilled, one uses, as already indicated, a construction called

Ext∗ (§24; I skip the details).
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(here, G′ is my simplified notation for a certain construction on G which is possible
only if the conditions mentioned are satisfied); moreover, one has generally

Hom(lim−→Tα, G′) ∼= lim←−Hom(Tα, G′).

Now, Eilenberg and Mac Lane make the following interesting remark:

But the group on the left is simply Ext(lim−→Tα, G), by another application
of Theorem 17.2. The desired result should then follow by taking (inverse)
limits on both sides in [(∗)].

To carry out this argument, it is necessary to have the naturality condi-
tion which gives the isomorphism theorem (Lemma 20.2) for inverse systems.
This naturality condition requires that the isomorphism [(∗)] permute with
the projections of the inverse systems. [ . . . ] The proof of this naturality is
straightforward [ . . . ] [1942a, 793].

2.2.6 The isomorphism theorem for inverse systems
What does the “Lemma 20.2” say? To state it, one has to define first what an
inverse system is.

A directed set J is a partially ordered set of elements α, β, γ, · · · such that
for any two elements α and β there exists an element γ with α < γ, β < γ.
[ . . . ]

For each index α in a directed set let Aα be a (generalized [i.e., not
necessarily Hausdorff] topological) group, and for each α < β let ψαβ be a
(continuous) homomorphism of Aβ in Aα. If ψαβψβγ = ψαγ whenever α <
β < γ, the groups Aα are said to form an inverse system relative to the
projections ψαβ. Each inverse system determines a limit group A = lim←−Aα.
An element of this group is a set {aα} of elements aα ∈ Aα which “match”
in the sense that ψαβaβ = aα for each α < β. The sum of two such sets is
{aα}+{bα} = {aα + bα}; since the ψ’s are homomorphisms, this sum is again
an element of the group. This limit group is a subgroup of the direct product
of the groups Aα. The topology of the direct product

Q
Aα thus induces [ . . . ]

a topology in A = lim←−Aα [ . . . ]
Lemma 20.2. If the groups Aα form an inverse system relative to the

projections ψαβ , while Cα form an inverse system relative to projections φαβ,
and if σα are (bicontinuous) isomorphisms of Aα to Cα, for every α, such that
the “naturality” condition σαψαβ = φαβσβ holds, then the groups lim←−Aα and
lim←−Cα are bicontinuously isomorphic [1942a, 789f].

(We shall not be concerned here with the allusions to topological properties of
the groups and isomorphisms involved; compare n.103). Eilenberg and Mac Lane
actually give no proof of this lemma, and no direct indication where a proof can be
found in the literature. However, they give general references for other accounts on
the theory of inverse (and direct) systems in n.20 on p.789, mentioning especially
[Lefschetz 1942]. In this book, a proof of the lemma (with isomorphisms replaced by
homomorphisms in general) can be found on p.55. Translated in terms of Eilenberg
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and Mac Lane, Lefschetz says first that if a = {aα} is any element of lim←−Aα then
a �→ {σαaα} defines a homomorphism σ : lim←−Aα → ∏

Cα where
∏

Cα denotes
the direct product of the Cα. But one has φαβ(σβaβ) = σαψαβaβ = σαaα, the
first equation being obtained by an application of the “naturality” condition and
the second by the “matching” property from the definition of the inverse limit.
From these equations one sees that σa is an element of lim←−Cα (and not only of
the larger group

∏
Cα), so σ is actually a homomorphism lim←−Aα → lim←−Cα. This

proof need not be changed when one replaces “homomorphism” by “isomorphism”,
and there is no doubt that Eilenberg and Mac Lane were aware of this (anyway
rather simple) argument.

The concept of direct limit, defined by Eilenberg and Mac Lane on p.789,
seems to be needed in the present context only insofar as Pontrjagin duality theory
is used. Eilenberg and Mac Lane seem not to use a corresponding “isomorphism
theorem” for direct systems. A proof for such a theorem is contained in [Eilenberg
and Steenrod 1952, 223] (definition 4.11).

2.3 The first publications on category theory
Eilenberg and Mac Lane in the joint paper [1945] expose systematically the con-
cepts of “functor” and “category” used implicitly in [1942a].

2.3.1 New conceptual ideas in the 1945 paper
2.3.1.1 Concepts of category theory and the original context of their introduction

The paper contains a lot of conceptual ideas which became important in the later
development; evidence for this fact is contained in the following list which will be
referred to and completed throughout the book (pages refer to [1945]):

• functor categories are defined on p.250; “this category [ . . . ] is useful chiefly
in simplifying the statements and proofs of various facts about functors, as
will appear subsequently”. Actually, the concept is used to define a functor
“composition of functors”116 (denoted ⊗) on p.250f. This composition functor
in turn is used in the treatment of limits (see 2.3.1.2).

• a single group is regarded as a category on p.256117—actually not entirely in
the way we would do that today (namely, the only object is the unit element
of the group, and the arrows are the remaining elements), but rather, a group

116Functors in [1945] have usually two arguments; thus, three categories occur in the definition of
a functor category, and the composition functor goes from two such functor categories to a third
one. There is some evidence that Eilenberg and Mac Lane felt that there may be foundational
problems in this situation; compare section 6.3.1.
117that is, not in the chapter on groups but in the chapter on natural transformations. This

was done perhaps to point out the resemblance of group homomorphisms with functors, and of
conjugateness of group homomorphisms with natural equivalence of functors, i.e., to present the
category concept as a generalization of the group concept.
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is regarded as a category of groups with just one object. The only use made of
this concept is on p.264 in the context of the use of functors in group theory.
The precise quotation is interesting since it provides an insight into what
Eilenberg and Mac Lane considered actually as the original contribution of
their theory (for the definitions of the concept of subfunctor and the various
types of subgroups intervening in the citation, see [1945]):

[ . . . ] various types of subgroups of G may be classified in terms
of the degree of invariance of the “subfunctors” of the identity which
they generate. This classification is similar to, but not identical with,
the known distinction between normal subgroups, characteristic sub-
groups, and strictly characteristic subgroups of a single group [ . . . ].
The present distinction by functors refers not to the subgroups of an
individual group, but to a definition yielding a subgroup for each of
the groups in a suitable category. It includes the standard distinction,
in the sense that one may consider functors on the category with only
one object (a single group G) and with mappings which are the inner
automorphisms (the subfunctors of I = normal subgroups) [and so on].

Hence, the example of a single group forming a category was introduced
to present a standard group theoretical distinction as a special case of a
new functorial distinction. The device of a kind of singleton category for
the reduction of the distinction by functors to the standard distinction will
later be paralleled methodologically by Grothendieck’s use of single points as
special varieties to obtain “absolute” versions of “relative” theorems; compare
3.3.3.5 and 4.2.2.

• The concepts of product category and dual category118 are introduced on
p.258 and p.259, respectively. Both concepts together serve the purpose to
reduce arbitrary functors to covariant functors in one argument (where the
product category serves obviously for the reduction of the number of argu-
ments and the dual category for establishing covariance).

• A single partially ordered set is regarded as a category, in view of a functorial
definition of direct and inverse limits (see below). Moreover, the usual unique-
ness property is regarded as characterizing this category; compare n.120.

• In an appendix entitled “Representations of categories” (which will be dis-
cussed in the context of identification criteria of categories in section 5.4.4.2),
Eilenberg and Mac Lane use the idea to represent an object A by the set of
all arrows arriving at A (in modern terms, the set

⋃
B Hom(B, A); see [1945,

293]).
118This concept was apparently attributed to Buchsbaum in the Bourbaki rédaction n°279 (the

author of which was Cartan, see [Krömer 2006b]); indirect evidence for this is to be found on p.1
of the discussion of n°279 contained in La Tribu 43 . Eilenberg was not present at the congress
43 (1957.1), so he could not correct this mistake. Dieudonné, on the other hand, in [1989, 151]
erroneously writes that the concept was introduced for the first time in [Grothendieck 1957] and
does not mention Buchsbaum in this context; but he is clearly aware of the use Buchsbaum made
of the concept (see the section on abelian categories on p.155ff of his book).
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It is to be noted that all the categories mentioned were introduced precisely to
serve as domains of certain functors (i.e., the main interest was to describe certain
constructions as functors). This observation is in agreement with the following re-
mark by Eilenberg and Mac Lane: “the idea of a category is required only by the
precept that every function should have a definite class as domain and a defi-
nite class as range, for the categories are provided as the domains and ranges of
functors” 〈#25 p.245〉. These matters will be discussed in more detail in sections
5.3.1.5, 5.3.2.4, and 6.3.1.

One more innovation, the functorial treatment of limits, was so important
for the history of CT as to deserve to be discussed in an independent section.

2.3.1.2 Functorial treatment of direct and inverse limits

[ . . . ] limiting processes are essential in the transition from the homology
theory of complexes to that of spaces. Indeed, the general theory developed
here occurred to the authors as a result of the study of the admissibility of
such a passage in a relatively involved theorem in homology theory [[1942a,
777, 815]] [1945, 236 n.4].

This note is the only trace left in [1945] by the question whether the results of
theorem 33.1 from [1942a] are stable under the passage to a limit (compare section
2.2.5); this theorem is reproduced only for the case of complexes (on p.290). But
the conceptual analysis of the problem of isomorphisms stable under a passage
to the limit broadly determines their new theory: as we would put it now119, an
isomorphism is stable under a passage to the limit if it is actually an isomorphism
of functors.

Now, the result of section 2.1.2 was just that the concept of homology group
was introduced partially for the study of continuous mappings by algebraic means.
However, the applicability of these means depends largely on the conditions un-
der which homomorphisms between (co)homology groups exist. One should think,
hence, that these conditions in general were also the historical motivation for the
introduction of CT. We did observe in 2.3.3, however, that the original motiva-
tion of Eilenberg and Mac Lane was a more restricted one: they were at first
only interested in isomorphisms between limit groups (in view of universal coef-
ficient theorems). For isomorphisms, the existence conditions are analoguous; in
[Eilenberg and Mac Lane 1942b] one reads “our condition (E2) below [the natu-
rality condition] appears in the definition of the isomorphism of two direct or two
inverse systems of groups”.

The definition of the direct and inverse limit of groups in [1945, 273, 276]
corresponds to that given in [1942a] (see 2.2.6). What is new in [1945] is that “the
operations of forming direct and inverse limits of groups are described as functors
[on] suitable categories” [1945, 235f]. On p.272, they observe first that “it is [ . . . ]
possible to regard the elements of a single quasi-ordered set P as the objects of a

119see also section 5.4.4.2
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category”. Here, the term “quasi-ordering” means a reflexive and transitive binary
relation on a set; such a quasi-ordering becomes a partial ordering if it is moreover
antisymmetric (n.20; they write �<� despite reflexivity). They continue: “with this
device, one can represent an inverse or a direct system of groups (or of spaces) as
a functor on P ”. They point out then how the arrows are to be defined and obtain
the category CP

120.

Eilenberg and Mac Lane next interpret the directed set P underlying a direct
or inverse system as such a category CP . Thus, a direct, resp. inverse, system of
groups becomes a functor from this category to Grp; a natural morphism between
such systems is just a natural transformation between such functors, which means
a morphism in the corresponding category of functors. Hence, the answer to the
original question, which property of a morphism between systems guarantees the
existence of a homomorphism between the limit groups, is implemented in the
operation to regard the construction as a categorial one. In the category obtained,
these existence conditions are satisfied “automatically”; this category contains only
“appropriate” morphisms between systems. The “right” conceptual framework is
found.

By this step, the process of transition to the limit can be regarded as a
functor on the category of inverse or direct systems. Eilenberg and Mac Lane use
this in [1945, 280ff] to explain what it means to lift a functor to the limit and that
a functor commutes with a limit (which implicitly contains such a lifting). This
phenomenon was very important in [1942a]. Finally, the conceptual framework
suggests transferring the concept of limit to other categories:

[ . . . ] the limit group of a direct system of groups can be defined up to
an isomorphism by means of [ . . . ] extensions of functors. This indicates that
the concept (but not necessarily the existence) of direct “limits” could be set
up not only for groups, but also for objects of any category [p.275].

This notwithstanding, the main activity at this stage is to provide a systematiza-
tion of what grew wildly before. It was Kan who replaced the category CP by other
categories121 and thus freed the concept of limit from its traditional restricted use;
see 2.5.2.

120Concerning this category, they note on p.273: “It [ . . . ] follows that any two mappings
π1 : p1 → p2 and π2 : p1 → p2 of [the] category [CP ] which have the same range and the same
domain are necessarily equal. Conversely any given category C which has the property that any
two mappings π1 and π2 of C with the same range and the same domain are equal is isomorphic
to the category CP for a suitable quasi-ordered set P . In fact, P can be defined to be the set of
all objects C of the category C with C1 < C2 if and only if there is in C a mapping γ : C1 → C2”.
121This parallels the idea underlying the concept of Grothendieck topology; compare section

4.1.2.2.
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2.3.2 The reception of the 1945 paper

2.3.2.1 Eilenberg and Mac Lane needed to have courage to write the paper

The readyness to write down and submit for publication a work almost com-
pletely concerned with conceptual clarification (and with the solution of some
internal problems raised by the new concepts themselves) is a remarkable expres-
sion of courage. While (as Corry learned from Eilenberg, see [Corry 1996, 366
n.27]) Steenrod once stated concerning [1945] that “no paper had ever influenced
his thinking more”, P.A. Smith said that “he had never read a more trivial paper in
his life”. [Mac Lane 1988a, 334] writes, without mentioning a name: “One of our
good friends (an admirer of Eilenberg) read the paper and told us privately that
he thought that the paper was without any content”. This might again have been
P.A.Smith, since later, when he was Dean at the department of mathematics of
Columbia University, he managed to obtain a professorship for Eilenberg there, so
he certainly was one of their good friends and kind of an admirer of Eilenberg. And
again, [1996, 130] tells us that “Eilenberg had arranged that the manuscript of this
first paper was refereed by a young person, even though the editor of the Journal
[ . . . ] was quite sceptical of its content”. This editor was not Smith; the editors of
the Transactions of the AMS were A.A. Albert, E.J. McShane and Oskar Zariski
by then.

Serge Lang is often credited with the well-known expression “general abstract
nonsense” since he made it popular with his Algebra textbook; [Hilton 1981, 80]
comes somewhat closer to the truth by naming Mac Lane. But the expression was
actually introduced (as a joke) by Steenrod (who confirmed it to McLarty).

The interesting thing about all this is that not even Eilenberg and Mac Lane
themselves seem to have been aware of the potential of their creation around 1945.

Initially, Eilenberg and Mac Lane had written what they thought would
perhaps be the only necessary research paper on categories—for the rest,

#3categories and functors would provide a useful language for mathematicians
[Mac Lane 1988a, 345].

In the original text, they are rather explicit on the fruits they expect from the
theory:

In a metamathematical sense our theory provides general concepts appli-
cable to all branches of abstract mathematics, and so contributes to the cur-
rent trend towards uniform treatment of different mathematical disciplines.
In particular, it provides opportunities for the comparison of constructions
and of the isomorphisms occurring in different branches of mathematics; in
this way it may occasionally suggest new results by analogy [1945, 236].

The courage exhibited by Eilenberg and Mac Lane perhaps reveals the con-
viction that conceptual clarification can be equally important for mathematical
progress as problem solving; a similar conviction later comes to light in Grothen-
dieck’s work.
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[Dieudonné 1989, 98] thinks that the Eilenberg and Mac Lane paper on
acyclic models [1953] is their first application of CT which is more than general
abstract nonsense.

2.3.2.2 Reasons for the neglect: too general or rather not general enough?

The conceptual ideas described in 2.3.1.1 were neglected in the first years following
publication of the paper, not only because it could not be anticipated that they
later would turn out to be very useful, but also because the authors treated them
as exclusively related to their present particular purposes. It might sound odd,
but I think seriously that Eilenberg and Mac Lane did not stress sufficiently the
very general character of their conceptual framework. Their writings pay much
attention to the immediate applications of the concepts the authors encountered
in their recent work on group extensions and related contexts, while possible ap-
plications to other fields are only treated marginally. In detail, this concerns the
following points:

• They concentrate on isomorphisms where something could be said about
homomorphisms in general122. This was pointed out in section 2.2.6 as far
as the naturality condition is concerned. [1942b] concerns uniquely natural
isomorphisms, mentioning the possibility of a more general concept of trans-
formation only marginally on p.541. Even [1945], despite discussing many
natural transformations which are not equivalences, mentions only equiva-
lences in its title.

• They concentrate on groups. Again, [1942b] treats exclusively applications
of the functor concept in the context of groups, mentioning the possibility
of applications in other fields only marginally at the end of the paper. And
[1945], while presenting the theory in the desirable generality, concerns to a
large extent its applications in group theory (in the sense of pure algebra)
on the one hand and homology theory on the other. But these applications
look at first glance most often like mere translations of well-known group-
theoretical and topological results in terms of functors; in truth, there are real
differences and achievements, but they are not easily found in the text123.
This might have suggested the view that category theory is merely a language
(and not even necessarily a convenient but a sometimes complicated one).

• They present original constructions of category theory merely in relation to
particular purposes; see the list in 2.3.1.1.

The fact that functors in [1945] have usually two arguments counts not as another
instance of lacking generality since the way functors of an arbitrary number of

122This parallels the prehistory of the sheaf concept in the work of Steenrod; see n.191.
123One such example is provided by the “functorial distinction” replacing the “standard distinc-

tion” of certain types of subgroups, as described in 2.3.1.1.
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arguments can be treated is indicated (compare again 2.3.1.1 for the role of the
concept of dual category in this context).

To sum up: I think that Eilenberg and Mac Lane were not offensive enough;
they presented the generality of their framework as a necessary evil (which it isn’t)
to achieve their desired purposes instead of praising its possibilities.

2.3.3 Reviewing the folklore history

As indicated at the end of section 2.3.2.1, Eilenberg and Mac Lane underestimated
the achievements to be expected from their theory. Anybody who is uncomfortable
with that idea has probably in his turn a too generous idea of what in [1945] really
was achieved. Such an idea can easily be adopted if one does not rely on the original
work but exclusively on the historiography of the protagonists, whose unreliability
shall be exemplified here again (see also 2.2.3).

[ . . . ] the notion of a functor as a morphism of categories is suggested
by the decisive example of the homology functor [ . . . ] on the category of
topological spaces to the category of abelian groups [ . . . ] [Mac Lane 1970,
229].

Is this statement a historical fact? Admittedly: in 2.1.2, I myself defend the inter-
pretation that the concept of homology group was developed in view of the induced
homomorphisms, since what was ultimately sought was a conceptual framework for
a study of continuous mappings; hence the idea comes quickly to one’s mind that
homology should have been the motivating example for the concept of functor124.
However, in [Eilenberg and Mac Lane 1942a], it is not the induced homomor-
phisms between homology groups they are interested in. They are only interested
in isomorphisms, and not even in isomorphisms between two homology groups
(i.e., for different spaces), but in the fact that a homology group is isomorphic
to a group-theoretic construction (Hom, Ext, and the like). They only mention
homomorphisms induced by passing to these groups—and passing to them not
from spaces but from given groups. topology comes into play only by the observa-
tion that cycles form groups. The group homomorphisms between (co)homology
groups induced by continuous, resp. simplicial, mappings are just not important
for their purpose (with only the exception of the transition to a refinement in
the framework of the approximation of a space, as discussed on p.815—but what
counts is not the naturality of these transitions, but that of the “orthogonal” ones).
So, all the functors they really study as functors are functors from the category of
groups to itself (unlike homology). It is for this reason that the homology functor
is absent from the list of examples for functors in [1942b] and that homology is
mentioned only marginally there. Further, in this announcement of [1945], the cat-
egory concept is not even introduced, but a functor is defined as a thing sending a
group to a group and so on (hence, the homology functor cannot be identified as a
124This idea is elaborated in [McLarty 2006a], and I do not disagree with McLarty in stressing

the importance of Noether’s work on homology for the overall development of category theory.
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functor here). After all, the subject matter of [1942a] is (“for once”) not the study
of mappings, but questions related to universal coefficient theorems of a certain
type.

But it is also true that the questions of naturality, despite arising only in
connection with the algebraic part, are motivated by the topological (passage to
the limit). And that homology is indeed a functor is pointed out at some length
in [1945, 284]. One should perhaps modify Mac Lane’s account thus: it was ho-
mology that motivated the introduction of the general category concept (beyond
an exclusive study of group theoretical functors).

Barr and Wells give the following account of the content of [1945]:

Categories, functors and natural transformations were invented by S.
Eilenberg and S. Mac Lane [in [1945]] in order to describe the connecting
homomorphism and the long exact sequence in Čech homology and cohomol-
ogy. [ . . . ] in Čech theory [one] form[s] the direct limit of the homology groups
over the set of all covers directed by refinement. This works fine for defining
the groups but gives no information on how to define [induced] maps [ . . . ],
not to mention the connecting homomorphism. What is missing is the infor-
mation that homology is natural with respect to refinements of covers as well
as to maps of spaces [Barr and Wells 1985, 62].

As we have seen, these problems about Čech theory at least are not the subject of
the very first paper. And in the 1945 paper, mention is made only very rarely of
Čech theory (p.292): They indeed finally prove that Čech homology is a functor,
but they do not discuss the connecting homomorphism. The problems mentioned
by Barr-Wells were actually studied somewhat later, namely in [Eilenberg and
Steenrod 1952].

Now, I do not intend to present only a destruction of folklore history; while
not always finding it possible to thoroughly inspect the sources, professional math-
ematicians in their written presentations exhibit systematically a profound under-
standing of the working situation and have thus made worthy contributions. In
the present case, one can learn that the construction of homomorphisms for Čech
theory is not merely desirable because one is concerned, as I put it so far, with the
“study of mappings”. Rather, one tries to construct a very particular homomor-
phism (whose construction is incidentally not guaranteed by functoriality alone),
namely the connecting homomorphism which allows one to write down the long
exact (co)homology sequence. This sequence has certain tasks which are actually
considered as so important that Eilenberg and Steenrod included the existence of
such a sequence among the axioms of a (co)homology theory (see 2.4.1.1); for the
different achievements of this axiom, see the Hurewicz citation discussed in 2.3.4.1
and finally 3.4.1 in relation to homological algebra. In the case of Čech theory,
a long exact homology sequence is to be had only under some conditions, while
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a cohomology sequence is always given; [Eilenberg and Steenrod 1952, 233, 248,
252]. This may have been one of the reasons for “Čech theory” being nowadays
almost synonymous to “Čech cohomology”125.

2.3.4 Informal parlance

It is of some interest to discuss also the early history of the terminology chosen
by Eilenberg and Mac Lane. The latter gives some hints:

The discovery of ideas as general as these is chiefly the willingness to make
a brash or speculative abstraction, in this case supported by the pleasure
of purloining words from the philosophers: “Category” from Aristotle and

#4Kant, “Functor” from Carnap (logische Syntax der Sprache), and “natural
transformation” from then current informal parlance [Mac Lane 1971b, 29f].

I will not discuss here the philosophical sources indicated by Mac Lane as
inspiring the choice of terminology in early category theory as far as “category” is
concerned126 (in the case of “functor”, the categorial meaning of the term seems not
to be related to Carnap’s use127). Instead, I shall analyze more closely the claim
that speaking of “natural transformations” was part of the then current informal
discourse of mathematicians, and moreover I shall point out that this was the case
for “category” as well.

We have seen in section 2.3.2.1 that the acceptance of the Eilenberg–Mac
Lane theory was hesitant; this is actually not only true for the concepts, but also
for the terminology they introduced. One of the most prominent opponents128 of
category theory was André Weil (see also [Krömer 2006b]). Corry quotes from
a “letter [ . . . ] to Chevalley, dated October 15, 1950, and distributed among the
members of Bourbaki as an appendix to one of the issues of ‘la tribu’ ”; in this
letter, Weil deals with the term “functor”; his statement is not only of relevance

125Further reasons are certainly that in sheaf theory one obtains a cohomology theory, according
to the variance of the section functor (see chapter 3), and the algebraic advantages of cohomology
in general, as explained in [Houzel 1998, 36], for instance.
126Ernst Kleinert recently presented an elaboration of philosophical connections between Kant’s

categories and categories in the sense of Eilenberg–Mac Lane in his paper “Categories in
Philosophy and Mathematics” (see ftp://ftp.math.uni-hamburg.de/pub/unihh/math/papers/
hbm/hbm2004199.ps.gz).
127It was Mac Lane who reviewed the English translation of Carnap’s Logische Syntax der

Sprache in the Bulletin of the AMS (1938); he mentions there that (and how) Carnap employs
the term. In [1996, 131], Mac Lane writes: “Carnap [ . . . ] had talked of functors in a different
sense and made some corresponding mistakes. It seemed in order to take over that word for a
better and less philosophical purpose”. This somewhat arrogant account obscures the fact that
Carnap’s terminology has always since been widely employed in logical analysis of language. Steve
Awodey at a 2005 Paris meeting on history of category theory (entitled “Impact des categories. 60
ans de théorie des catégories: aspects historiques et philosophiques”, October 10–14, ENS, Paris)
delivered an interesting talk about the relationship between Carnap and Mac Lane, especially
on the role of Mac Lane in Quine’s reception of Carnap.
128not in the sense that he opposed prominently, if publicly, but just that he happened to be

prominent and an opponent simultaneously.
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in the present context, but will also be needed for later reference (I quote from
Corry’s book):

Should the word “function” be reserved for mappings sending a set to
the “universe”, as you have done [ . . . ] or is it perhaps convenient to name
“function” anything to which we attach a functional symbol, e.g., P(E), A×
B, A © B [ . . . ] etc.? Obviously, “function” in the second sense will not be
a mathematical object, but rather a metamathematical expression. This is
undoubtedly the reason why there are people (without giving names. . . ) who
use the word “functor”. Should we accept this term? It seems that a word is
needed for this notion. “Function” in the two senses would perhaps have more
advantages than inconvenience129 [Corry 1996, 379].

It is not excluded that Weil’s dislike is due to the fact that the term had “philo-
sophical” uses (Carnap).

2.3.4.1 “Natural transformation”

[Hilton 1981, 79], a review of [Semadeni and Wiweger 1979], begins thus:

All mythology contains a strong element of poetic truth. According to
popular mathematical mythology, the notions of category, functor and natural
transformation were developed (by their inventors, [[1945]]) in response to the
challenge of a famous mathematician who declared “Everybody knows what
it means to say that a transformation is natural, but nobody can define it in
precise terms.”

The claim is that there was, at the time when [1942a] was written, a current
informal parlance consisting in calling certain transformations natural and that
Mac Lane and Eilenberg tried (and succeeded) to grasp this informal parlance
mathematically. It remains to supply evidence for the first part of this claim, the
second depending on whether the Eilenberg–Mac Lane definition actually covers
or not what was intended in the informal usage. Methodologically, one has to keep
in mind that there are two possible cases: if the parlance (and the “right” meaning)
is found at various places, then everything is fine; however, if nothing is found at
the places that come to one’s mind first, one would in principle be obliged to
look at virtually all possible places, which will not be done here—so I will only
try to verify the claim, not to falsify it definitely if it turns out to evade explicit
verification.

129“Faut-il réserver le mot ‘fonction’ à une application d’un ensemble dans l’univers, comme
tu as fait [ . . . ] ou bien convient-il de nommer ‘fonction’ tout ce à quoi on attache un symbole
fonctionnel, e.g. P(E), A×B, A©B [ . . . ] etc. ? Evidemment ‘fonction’ dans le second sens ne
serait pas un objet mathématique, mais un vocable métamathématique ; c’est sans doute pourquoi
il existe (je ne veux nommer personne. . . ) des gens qui disent ‘foncteur’ ; devons-nous accepter
ce terme ? Il semble qu’on ait besoin d’un mot pour cette notion. ‘Fonction’ dans les deux sens
aurait peut-être plus d’avantages que d’inconvénients”. (The translation of the last sentence is
mine.)
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In the relevant papers [1942a, 1942b, 1945], Eilenberg and Mac Lane do not
make any indications as to the origin of the “natural”-terminology130. Now, it is
precisely characteristic for an established community that a current informal par-
lance not only exists and is used, but moreover is never written down in published
sources, since there were many occasions for personal exchange, in particular con-
cerning informal ideas which are (unfortunately) not supposed to be appropriate
for exposition (cf. 2.4.1.2). Rather, one might hope to find evidence in written cor-
respondence between members of the community. However, my succinct inspection
of the letters written to Eilenberg did not reveal any sign of the informal parlance
in question (a closer inspection should be undertaken), and I do not know so far
about other important collections of letters covering the community in question.

I was able to find the following examples of speaking about “natural homo-
morphism131”:

• Lefschetz [1942] uses the word “natural” at least in two instances. First,
he calls natural projection the homomorphism of a group G on a factor
group G/G′ (nowadays called most often the canonical homomorphism; p.45).
Moreover, he says:

(19.8) If H is the character group of G then the multiplication[132]
gh giving the value of h at g [ . . . ] is known as the natural multiplication
of the two groups [p.66].

In both cases, what is meant is not naturality in the sense of Eilenberg and
Mac Lane. Since Lefschetz does not discuss the constructions Hom and Ext,
it is clear that he does not discuss the isomorphisms that they point out as
natural ones.

• in a different context, Hurewicz uses the wording:

Let A be a locally compact space, B a closed subset of A, and
Hn(A), Hn(B), Hn(A − B) the n-dimensional cohomology groups of
the sets A, B and A−B (with integers as coefficients). Consider “natural
homomorphisms” Hn(A) → Hn(B) → Hn+1(A − B) → Hn+1(A) →
Hn+1(A − B) [sic!]. It can be shown that the kernel of each of these
homomorphisms is the image of the preceding homomorphism. This
statement contains Kolmogoroff’s generalization of Alexander’s duality
theorem and has many applications [Hurewicz 1941, 562].

It is not clear if these homomorphisms are meant to be natural in the sense of
Eilenberg and Mac Lane or if Hurewicz merely wants to indicate that their
definition is obvious. Incidentally, Hurewicz mentions that the sequence is
what later became called an exact sequence; see n.170. For Kolmogoroff’s
generalization of Alexander’s duality theorem, see [Lefschetz 1942, 244].

130and interestingly, the above cited account of Hilton’s is more precise than anything contained
in the autobiographical literature of Mac Lane.
131[Eilenberg and Steenrod 1945, 118] call a long exact homology sequence a “natural system”

of groups and homomorphisms.
132Lefschetz develops a concept of group multiplication (p.59ff), following [Pontrjagin 1931].
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• Fox [1943] works in a rather similar situation: he considers homotopy groups
and the corresponding homology groups with integer coefficients for a space
Y , its n-dimensional skeleton X and the space Y mod X . Fox makes some
notational conventions:

Pk =

⎧⎪⎨
⎪⎩

πk(Y ) for k ≡ 1 mod 3;
πk(X) for k ≡ 2 mod3;
πk(Y mod X) for k ≡ 0 mod 3;

Qk =

⎧⎪⎨
⎪⎩

Hk(Y ) for k ≡ 1 mod 3;
Hk(X) for k ≡ 2 mod3;
Hk(Y mod X) for k ≡ 0 mod 3;

One has “natural homomorphisms” r
(P )
m : Pm → Pm−1, r

(Q)
m : Qm → Qm−1,

hm : Pm → Qm. Fox states: “the nucleus of rm is the image of rm+1, and hr =
rh”. This means: the homotopy and homology sequences are exact, and the
transformation π → H is natural in the technical sense (it commutes). This
was known to Hurewicz in an implicit form; he actually stated that a mapping
fεY X induces both a homomorphism π1(X) → π1(Y ) of fundamental groups
and a homomorphism β1(X) → β1(Y ) of Betti groups, and that in a certain
case the first homomorphism is determined by the second [1936b, 220].

In Fox’ notation, no difference is made between homomorphisms on
groups of the same dimension on the one hand and dimension shifts (con-
necting homomorphisms) on the other hand. A similar remark applies to his
usage of the word “natural”: he calls “natural” three sorts of homomorphisms
(the two mentioned and the transformation π → H), but only in one case
is he explicitly interested in naturality in the technical sense. Especially, he
does not explicitly mention the commutativity conditions to which connect-
ing homomorphisms are usually subject, and which are similar to naturality
in the technical sense.

Incidentally, Fox’ text was received March 25, 1943; hence this work
certainly does not belong to the informal parlance Eilenberg and Mac Lane
could have been thinking of when writing their paper one year earlier. To
the contrary, one could also read Fox’s text as evidence for the influence
of Eilenberg and Mac Lane’s terminology: he might have used it (without
referring to their work, but having it in mind). But this seems not convincing,
because if Fox, by calling the homomorphisms natural, wanted to say that
they are natural in the technical sense, he could have avoided mentioning the
equation hr = rh explicitly! So in saying “natural”, he wanted most probably
only to say that the definitions of these homomorphisms are obvious to the
experts.

Hurewicz and Fox wrote preliminary reports. In texts of that kind, one cannot,
due to lack of space, give precise definitions of everything one speaks about, so one
leaves aside precisely what the readers adressed by the text (i.e., the community
of persons active in the field) will be able to reproduce on their own; “natural” is a



2.3. The first publications on category theory 73

kind of hint: “just do it the obvious way”. The fact that restrictedness of space was
a leading principle in Fox’ exposition is also indicated by the condensed notation.

Suppose that (despite lack of convincing evidence so far) there was actually
an informal use of the term “natural”; what is interesting is on what Eilenberg and
Mac Lane concentrate in their explication attempt. Their own informal discussion
suggests that the original characteristic of a “natural” homomorphism was some-
thing like independence of a base, to be defined “in the same way” for all objects
and so on. They, however, picked out commutativity (commuting with other ho-
momorphisms)133; they stress this repeatedly in [1942a] (as we observed already
in 2.2.5)—in §12:

the application of η [Hom(R, G) → Ext(F/R, G)] “commutes” with the
application of any homomorphism T to the free group F and its subgroup R;

in § 22:

the naturality condition which gives the isomorphism theorem [ . . . ] for
inverse systems [ . . . ] requires that the isomorphism [(∗); see 2.2.5] permute
with the projections of the inverse systems;

and most explicitly in § 38:

We are now in a position to give a precise meaning to the fact that the
isomorphisms established in Chapter V are all “natural”.

Theorem 38.1. If T is a chain transformation of a complex K into K′, then
T permutes with the isomorphisms established in [the universal coefficient
theorem for complexes] provided the application of T to any group is taken
to mean the application of the appropriate transformation induced by T on
that group [p.815].

Hence, their explication consciously moves to the foreground an aspect which was,
if at all, hidden in the informal uses. Is this done because the aspect stressed
lends itself more easily to a theoretical treatment than “the vague observation
that something is defined in the same way”? Or was it because only commutativity
counted in their specific working situation (concerning a passage to the limit)?

Anyway, to turn this explication into a general definition, they had to say
something about what a functor is (namely that it gives you objects for objects
and arrows for arrows) and on what kind of thing a functor is operating (namely
on a category, where you have objects and arrows—which compose, so you can ask
133Compare the following citation of Mac Lane: “the vague observation that the group homomor-

phisms tM are defined “in the same way” for every M can be expressed by the exact statement
that for every µ : M → M ′ the diagram

Ext1(C, M)
tM−−−−−→ L ⊗R M

??yµ∗
??y1⊗µ

Ext1(C, M ′)
tM′−−−−−→ L ⊗R M ′

is commutative” [Mac Lane 1961, 33].
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whether they commute). That is what they were doing in the subsequent 1945
paper. Instead of simply speaking about natural homomorphisms, they spoke
about natural transformations between functors (i.e., collections of such homo-
morphisms, one for each object in the domain category). They developed a quite
general theory (observing for instance that the construction of a limit can be seen
as a functor between suitable categories, and giving thus a description of lifting
some construction to a limit in terms of permutation between functors seen as
arrows between categories).

Later, in particular in the French community, the terminology “natural trans-
formation” was replaced by “functorial morphism”; this amounts obviously to mak-
ing a more systematic approach to category theory in which functors are nothing
but objects of a particular kind of category for which one has consequently to fix
what the arrows (or morphisms) are. The term “natural” became again employed
informally. Examples can be found in the Séminaire Cartan 50/51 p.19-07, in
[Grothendieck 1957, 124f] (compare section 296), or in [Grothendieck 1955a, 19]
where Grothendieck calls the map whose bijectivity is guaranteed by the “sheaf
conditions” (compare section 3.3.3.1) a “natural map”, certainly in the sense that
it is clear how this map is to be defined and that the definition can consequently
be omitted (compare the cases discussed above).

2.3.4.2 “Category”

[Lefschetz 1942, 37] speaks about the category of compacta (that is, of compact
metric spaces), but does not visibly emphasize morphisms. Rather, he points out
a certain number of properties of compacta.

[Weil 1940] uses Pontrjagin’s duality theory from [Pontrjagin 1934b] in the
theory of integration for topological groups. Weil adopts implicitly a categorial per-
spective since he is interested in particular in the mappings between the groups.
There, he distinguishes between représentations (in nowaday’s language: group
homomorphisms) and homomorphismes (in nowaday’s language: continuous group
homomorphisms; p.11). Weil observes that this distinction is of great importance
for duality theory in general; the situation is particularly simple when one makes
certain assumptions on the topology of the groups. Expressed in nowaday’s lan-
guage, Weil makes the following observations: let D denote the category of discrete
abelian groups and C the category of compact abelian groups134; in both of them
(not only in D, as one could think), all group homomorphisms are continuous
(all représentations are homomorphismes; p.109). The construction of the group
of characters for objects of D leads to objects of C and conversely (p.101). Weil
obviously does not use the Eilenberg–Mac Lane concept of category in his book.
But he comes close to the now usual language when saying:

The proof [of the results of duality theory] cannot be considered as com-
plete as long as one does not observe thoroughly [ . . . ] the distinction between

134For another context where the categories D and C yielded important examples motivating
categorial concepts, see 2.4.2.
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representations and homomorphisms; the two notions become identical if one
has to deal with compact [ . . . ] or discrete groups, and hence there is no dif-
ficulty of this kind as long as one restricts oneself to these two categories of
groups, one dual to the other135 [Weil 1940, 109].

It is to be noted that Weil speaks here about “categories of groups” (and means
more or less what is meant by it today) some years before Eilenberg and Mac
Lane introduced this terminology. This shows that “category” belonged to the
“then current informal parlance” in a certain sense (in a sense closer136 to the now
usual one than Aristotle’s or Kant’s, actually); and still more, this evidence is very
important insofar as Eilenberg and Mac Lane did know Weil’s work: already in
[1942a], they refer to the book; on p.762 even to the section discussed here!

With Weil, Pontrjagin duality gave an impulsion to focus the concept of
morphism (in the distinction between représentations and homomorphismes)137 .

Is there an intended interpretation of the term category? The terms “struc-
ture”, “set” and “function” were used by working mathematicians already widely
before formal explications were aimed at, and these explications actually had the
task to grasp this established usage. The term “category” too was used informally
before the Eilenberg–Mac Lane paper appeared, but in a much more vague way,
and certainly not restricted to what Eilenberg and Mac Lane actually called a
category. The definition of the concept of category may explicate something, but
the foregoing usage mostly did not concern this very “something”.

On the other hand, one perhaps wouldn’t agree that “category” is but an
arbitrary name which semantically has nothing to do with the meaning of the
concept bearing this name. Mac Lane wants us to believe that they were inspired
by the philosophical uses of the term 〈#4 p.69〉; I think that the truth rather
is that both these philosophical definitions and their mathematical concept are
inspired by the common language use of the term138.

135“[La] démonstration [des résultats de la théorie de la dualité] ne peut être considérée comme
complête tant qu’on n’observe pas soigneusement [ . . . ] la distinction entre représentations et
homomorphismes ; les deux notions devenant identiques lorsqu’il s’agit, soit de groupes compacts
[ . . . ], soit de groupes discrets, il ne se présente pas de difficulté de cette nature tant qu’on se
borne à ces deux catégories de groupes, en dualité l’une avec l’autre”.
136This notwithstanding, Weil would certainly have said that the term is a “vocable méta-

mathématique” and does not denote a concept which could—even if formalized—be counted as
mathematics; see n.129 and [Krömer 2006b].
137This distinction made it into the Bourbaki discussion on categories and other topics, compare

the section on André Weil of [Krömer 2006b].
138I do not know whether the term was used in greek common language before Aristotle listed

his categories, neither whether the present common usage of the term historically derives entirely
from Aristotle and Kant or not. But without any doubt our present common usage semantically
does not presuppose the aristotelian or the kantian conception of category; hence we are free to
grant this usage an independent role as a linguistic unity.
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2.4 Eilenberg and Steenrod: Foundations of algebraic
topology

From what has been said so far, it should have become clear that the concept
of homology (and of homology group) was originally introduced as a tool for the
study of topological spaces (and continuous mappings between them), but that
simultaneously, the actual calculation of the invariants, resp. of the groups, was
often a nontrivial problem for a given topological space, actually so much of a
nontrivial problem that proper tools for its own solution had to be developed
first. Such tools have been found in some properties of the concept of homology,
resp. homology group (these concepts became thus the objects of investigation).
The nontriviality of the problem of calculation of homology groups can already be
grasped through the following short description:

[It is necessary to single] out a class of spaces (triangulable spaces) suffi-
ciently simple that an algorithm can be given for computing their homology
groups. [ . . . ] Knowing the groups of a point, the groups of a contractible
space are determined. We choose a class of contractible spaces (i.e., simplexes)
and form more complicated spaces (i.e., complexes) by assembling these in a
smooth fashion. Then the groups of the latter spaces can be computed by the
use of Mayer–Vietoris sequences or similar devices.

This passage is taken from p.54 of the book Foundations of algebraic topology by
Eilenberg and Steenrod. This book appeared only in 1952, but its key ideas were
already outlined in their joint paper published in 1945. The book is a culmination
point of the efforts of conceptual clarification139 around the concept of homology
group (as discussed in section 2.1).

Eilenberg and Steenrod aim in their book to treat axiomatically the concept
of “homology theory” (i.e., to indicate what kind of data should be given and
which conditions should be fulfilled for the talk about a homology theory to be
justified, and what can be said about homology theories solely on the grounds of
this abstract characterization; see 2.4.1.1 below). The title Foundations of algebraic
topology is actually not very explicit as to this aim, because algebraic topology is
not exhaustively described as a theory of the concept of homology140; actually, the
use of the term “foundations” made by Eilenberg and Steenrod shall be subject
of thorough analysis (in 2.4.1.3; see also 7.1.1). The investigation of this book is
of importance in the context of the present work for two more reasons: on the
one hand, the axiomatic viewpoint of homology theories had a strong influence
on mathematical developments considered in the next two chapters; on the other
hand, categorial concepts were crucial for the realization of the axiomatization
project (see 2.4.2 below).

139in the sense of the distinction between problem solution tendency and conceptual clarification
tendency; see 1.2.3.1.
140In later editions of the book, on p.49 a remark is made that in the meanwhile Milnor [1956]

succeeded to axiomatize another central concept of algebraic topology, homotopy theories.
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2.4.1 An axiomatic approach
2.4.1.1 The project: axiomatizing “homology theories”

The immediate purpose of axiomatizing is to bypass the concrete calculation pro-
cedures wherever possible:

The great gain of an axiomatic treatment lies in the simplification ob-
tained in proofs of theorems. Proofs based directly on the axioms usually are
simple and conceptual. It is no longer necessary for a proof to be burdened
with the heavy machinery used to define the homology groups. Nor is one
faced at the end of the proof by the question, Does the proof still hold if
another homology theory replaces the one used? When a homology theory
has been shown to satisfy the axioms, the machinery of its construction may
be dropped [Eilenberg and Steenrod 1952, xf].

A similar argument is given in the preface to the chapter on Applications to Eu-
clidean Spaces:

[ . . . ] we derive a number of theorems concerning Euclidean space among
which are some of the most classical and widely used ones such as the Brouwer
fixed-point theorem and the invariance of domain. [ . . . ] we show how such
theorems can be derived using the axioms without appeal to any concretely
defined homology or cohomology theory [Eilenberg and Steenrod 1952, 298].

Hence, the guiding principle for the transition to the axiomatic viewpoint is the
simplification and economy of proving141.

I will not display the axioms in complete detail here; see [Eilenberg and
Steenrod 1952, 10ff] or [Dieudonné 1989, 107ff]. The axioms 1 and 2 express that
homology constitutes a functor, actually a homotopy invariant one according to
axiom 5; axiom 3 asserts that the boundary operator behaves well with induced
homomorphisms; axiom 4 postulates a long exact homology sequence for the spaces
X , A ⊂ X and X \ A; axiom 6 (the so-called excision axiom) says that the exci-
sion of certain subspaces leaves homology unchanged; axiom 7, finally, states that
one-point spaces have trivial homology. Analogous axioms 1c-7c for cohomology
theories are given as well. After the exposition of the axioms, Eilenberg and Steen-
rod give various models of them (i.e., proofs of existence of homology theories).
Already in the 1945 paper, they note (p.120):
141This idea was obviously not new in 1952; for example, Stefan Banach, in the preface of his

dissertation, notes the main interest of the method applied in the context of what has later
become called a Banach space: “the present work has the aim to establish some theorems valid
for different functional spaces [ . . . ] In order not to be obliged to prove them for each particular
functional space in isolation (which would be troublesome) [ . . . ], I consider in a general way
certain sets of elements of which I postulate certain properties; from these properties, I deduce the
theorems, and then I show that each particular functional space satisfies the postulates (L’ouvrage
présent a pour but d’établir quelques théorèmes valables pour différents champs fonctionnels [ . . .
] [A]fin de ne pas être obligé [de] les démontrer isolément pour chaque champ particulier, ce qui
serait bien penible [ . . . ], je considère d’une façon générale les ensembles d’éléments dont je
postule certaines propriétés, j’en déduis des théorèmes et je démontre ensuite de chaque champ
fonctionnel particulier que les postulats adoptés sont vrais pour lui) [Banach 1922, 134].
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Both the Čech homology theory [ . . . ] and the singular homology theory
[ . . . ] satisfy the axioms. This is fairly well known, although the proofs of
some of the axioms are only implicitly contained in the literature[142].

At the same time, the authors note that their axioms are categorical in the
following sense: two homology theories fulfilling the axioms yield isomorphic ho-
mology groups for a given space from an appropriate category of topological spaces.
This can be shown using exclusively the axioms (p.vii, ix; see also 2.4.1.3). How-
ever, Eilenberg and Steenrod do not stop at the insight that the result of the
calculation of homology theories is invariant under the different methods of calcu-
lation. They analyze the procedure itself: they point out which steps are necessary
to assemble a homology theory.

The discussion will be advanced by a rough outline of the construction of
the homology groups of a space. There are four main steps as follows:

(1) space → complex
(2) complex → oriented complex
(3) oriented complex → groups of chains
(4) groups of chains → homology groups

[ . . . ] [The] statement [of the axioms] requires only the concepts of point set
topology and of algebra. The concepts of complex, orientation, and chain do
not appear here. However, the axioms lead one to introduce complexes in
order to calculate the homology groups of various spaces. Furthermore, each
of the steps (2), (3), and (4) is derived from the axioms. These derivations
are an essential part of the proof of the categorical nature of the axioms
[Eilenberg and Steenrod 1952, viii].

An interesting observation as to the history of concepts is to be made here.
The conceptual progress of Poincaré and his immediate followers in algebraic topol-
ogy was precisely to introduce and evaluate the concepts of complex, orientation,
and chain; here, a subsequent conceptual progress is made in, so to say, getting
rid of them again.

2.4.1.2 Axiomatics and exposition

Is [Eilenberg and Steenrod 1952] really a textbook? Despite the didactical per-
spective stressed in the preface and the presence of exercises, the book looks more
like a monograph trying to impose some order in a far developed but somewhat
chaotic discipline; it seems not to be intended as a first text for beginners in al-
gebraic topology, but rather adressed to those already having a certain command
of the field. However, the authors make a quite explicit didactic statement which
142Compare [Eilenberg and Steenrod 1952, 47] “The axioms 1, 2, 3, and 7 are, perhaps, too

basic and too well understood to warrant [an] explicit treatment. One must be interested in an
axiomatic development before one thinks of writing them down”. As to the remaining axioms, see
for example Hurewicz’ first treatment of the exact homology sequence, as presented in 2.3.4.1—
and referred to by Eilenberg and Steenrod (p.47).
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is of some interest for the philosophical interpretation developed in this book and
consequently should be presented in some detail.

Here is how Eilenberg and Steenrod, in the preface of their book, motivate
their axiomatic approach143 to the problem of the presence of various types of
homology and cohomology groups:

In spite of this confusion, a picture has gradually evolved of what is and
should be a homology theory. Heretofore this has been an imprecise picture
which the expert could use in his thinking but not in his exposition. A precise
picture is needed. It is at just this stage in the development of other fields
of mathematics that an axiomatic treatment appeared and cleared the air
[Eilenberg and Steenrod 1952, viii].

What is interesting here is how they use the term “precise”. They think apparently
that precision has the task to render communication possible, in particular in cases
where the expert (who has at his disposal a “picture” serving his purposes) wants
to impart something to the non-expert (that is for example the student). They
seem to think further that precision is to be attained in particular by an axiomatic
treatment.

Hence, for Eilenberg and Steenrod precision is not a property related to the
adequateness of an explication! (but to the adequateness of a means of commu-
nication.) And this precision, it seems undebatable, is to be attained by a formal
presentation: the receiver is able to decode the message following a scheme agreed
on beforehand. The formal creates intersubjectivity: all participants of the dis-
course have a kind of standard key. But this is insufficient to grasp the intention.

In this context it is helpful to recall the Fregean distinction between sense
and denotation (Sinn und Bedeutung)144. In the continuity of this distinction, one
can distinguish between the communication function and the denotation of an
expression—and focus on both or only on the denotation145. Now, Eilenberg and
Steenrod consider precisely the axiomatic treatment as establishing the possibility
of a communication while the “initiated” (who has at his disposal an unexplicated
common sense) has access to the concept in a different way. This relates to the
observation that having common sense at one’s disposal is a competence to grasp
the Sinn of a concept, not the Bedeutung (to grasp the latter is the aim of science,
after all, and the historical realization of this aim in general is not under the
command of a single person)—and this competence can be proper to a certain
community. If one aims at teaching this competence to outsiders, one has, in

143Their axiomatics will be discussed in 2.4.
144[1892]; a concise presentation of Frege’s theory of meaning can be found for instance in

[Church 1956, 4ff] from where I also take the translation of the two terms (which is by no means
the only translation used).
145This change of perspective has most drastic effects when applied not in the case of concepts

but of propositions: in Frege’s theory, the denotation of propositions is their truth value. Hence,
propositions with very different content (Sinn) have all the same denotation: “true”. This is due
to Frege’s interpretation of propositions as names; see [Church 1956, 23f].
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order to communicate the Sinn, to find forms which the receiver is already in a
position to grasp.

Their axiomatic method parallels in some respects the use of axiomatics in
metamathematical contexts, and these parallels are not limited to the fact that
the axioms are the base of deduction: they discuss the existence of models as well
as independence and categoricity of the axioms. Halmos distinguishes between
naive and axiomatic set theory, see n.494; there is a similar relation between [Dold
1980] and [Eilenberg and Steenrod 1952]: Dold discusses one fixed homology theory
(naive in the sense of Halmos’) while Eilenberg and Steenrod point out what is
common to all homology theories (axiomatic).

2.4.1.3 A theory of theories

The Eilenberg–Steenrod project is quite interesting epistemologically. Before, al-
gebraic topology concerned objects whose means of constitution were mainly cal-
culatory, such that consequently the theory concentrated to a certain degree on
the problems posed by calculation. The objects of the new theory, however, are
the propositions about the previous objects (the axioms and what follows from
them deductively; propositions about homology theories as data, apart from the
constitution of these data) and the models of this collection of propositions. This
is indicated, on the one hand, by the new methodology of the discipline. On the
other hand, it is clear that the imprecise picture of the experts (see above) will
have been exactly this: a homology theory is everything about which such and
such propositions are valid. It is common sense on a technical level, the experience
flowing from the work with homology theories that justifies calling everything a
homology theory that fulfils these axioms.

The constitution of the previous objects was done in a certain number of steps
(the steps (1)–(4) described in section 2.4.1.1). These steps were carried out in the
various homology theories by concrete calculations. This implies that to prove a
proposition about these objects, one had to go back to the concrete calculation.
In the approach of Eilenberg and Steenrod, “each of the steps (2), (3), and (4) is
derived from the axioms” (2.4.1.1). The proofs in both cases are quite different.

If the propositions are indeed the new objects, then we face a criterion prob-
lem: which of the deducible propositions are the interesting ones? Here, a connec-
tion to the former level is present, since the interesting propositions were distin-
guished in the work dating from the years before the Eilenberg–Steenrod project.
In these years, the community of algebraic topology did work with numerous con-
crete calculation procedures and during this work did doubtlessly perceive again
and again the superfluous repetitions and the further trouble caused by this in
certain situations; hence there might have been reached a consensus on the de-
sirability to neutralize this trouble. Ultimately, only a community which reaches
such a consensus can be prepared to accept that the name “homology theory” is
given to objects different from those it used to be given to. The motivations for
all this can only be understood on a technical level.
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The restriction “in certain situations” means that I naturally do not claim
that the new objects replaced or rendered obsolete the old ones. The multiplicity
of calculation procedures wouldn’t even have emerged at all if not each one of them
had its genuine motivation and justification in a certain situation (where all the
others did not apply or did not apply “well”). Nevertheless, in applying the results
of these assembling procedures to various situations, one encountered again and
again the ever same propositions in the proof of which one had to rely on tedious
but apparently superfluous calculations (since the propositions apparently were
not tied to the concrete calculation procedure but were “universal”). Hence, it was
for the proof of such propositions that a more appropriate framework was needed;
the particular calculi still were the appropriate tool for their original tasks146.
Hence, algebraic topology was by no means transformed completely; rather, it was
enriched by a new aspect. However, as is shown in chapter 3, it was precisely this
aspect which allowed one to employ the methods of algebraic topology to algebraic
problems, i.e., to make them applicable beyond their traditional scope.

2.4.2 The significance of category theory for the enterprise

In the preceding section, I attempted to show that the epistomological vocabulary
developed in chapter 1 applies in the case of the book of Eilenberg and Steenrod.
But it is still to be argued that CT played a decisive role in such a shift to
a new common sense. Even if it is true that propositions are the new objects,
these propositions are not exclusively categorially codified (the axioms are not
exclusively expressible as commutative diagrams). Nevertheless, CT is of great
importance for the Eilenberg–Steenrod project.

[Eilenberg and Steenrod 1952] contains a chapter on categories (p.108ff). For
this reason, the book could be regarded as the first textbook on CT (if it can
be regarded as a textbook at all; see the discussion above; anyway, there is no
earlier book containing a chapter on the basic categorial concepts). This chapter
is opened by the following remarks:

The first objective of this chapter [IV: Categories and functors] is to in-
troduce and illustrate the concepts of category, functor, and related notions.
These are needed in subsequent chapters to facilitate the statements of unique-
ness and existence theorems. Only as much of the subject is included as is
used in the sequel. A thorough treatment can be found in [[Eilenberg and
Mac Lane 1945]].

The ideas of category and functor inspired in part the axiomatic treatment
of homology theory given in this book. In addition, the point of view that these
ideas engender has controlled its development at every stage [p.108].

(Further objectives of the chapter exist, as the citation suggests, but are not
relevant here.) Now, if the task is to “facilitate the statements of [ . . . ] theorems”,
CT is apparently used as a language. However, Eilenberg and Steenrod do not

146Certain techniques in this connection are discussed in section 2.5.1.
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confine to such a purely linguistic use: the functoriality of the constructions is
essential to their purpose and correspondingly is stressed at various places. The
first (and central) such place is on p.10f where functoriality of homology is made
an axiom for a homology theory.

As an example of the importance of functoriality in another context, take
the account given by Eilenberg and Steenrod of the difficulties with the concept
of a direct limit of topological groups. They point out first (p.132) why already
a direct sum is no useful construction for compact abelian groups:

∑
Gα would

not be closed in
∏

Gα (since everywhere dense, as is easily checked); however, the
topology of

∏
Gα being Hausdorff147,

∑
Gα would thus not again be compact. “It

is for this reason that the direct sum is not a useful operation to apply to compact
groups”. It is left implicit here that what makes it useless in the eyes of Eilenberg
and Steenrod is precisely the lacking functoriality of the construction

∑
Gα (the

construction leaves the category of compact abelian groups); at least, Eilenberg
and Steenrod explicitly mention two categories of groups in this context, namely
R-modules and compact abelian groups (p.110).

A similar argument is advanced against the concept of direct limit of topo-
logical groups (p.223): this would be the group (

∑
G)/Q for a certain Q; again, it

turns out that this Q would not be closed in
∑

G, i.e., the quotient would not be
Hausdorff—and “this means that no analog of 4.12 would hold for any reasonable
category of topological groups” (4.12 is the proposition asserting that the construc-
tion of inverse limit can be regarded as a covariant functor from the category of
direct systems of R-modules to the category of R-modules). Hence, two decisions
are stressed here: the functoriality of the limit concept should be guaranteed, and
categories of topological groups are “reasonable” only if the groups are at least
Hausdorff. The second decision flows probably from the applications of the theory
of topological groups made by Eilenberg and Steenrod (not discussed here); the
first decision will be understood most easily if one checks at which places 4.12 is
used in the sequel. The essential application seems to be that Čech theory fulfils
axiom 2 of a homology theory (resp. axiom 2c of a cohomology theory) asserting
the functoriality of (co)homology (p.240). To put it differently: Čech (co)homology
would cease to be a functor on topological groups when direct limits were used
instead of inverse limits.

Categorial concepts play equally an outstanding role as far as the simplifi-
cation and economy of proving is concerned (which above was described as the
guiding principle for the transition to the axiomatic viewpoint). The typical proof
method of CT is stressed as follows:

The reader will observe the presence of numerous diagrams in the text.
[ . . . ] Two paths connecting the same pair of vertices usually give the same
homomorphism. This is called a commutativity relation. The combinatorially
minded individual can regard it as a homology relation due to the presence

147“compact” in [Eilenberg and Steenrod 1952] means Hausdorff and compact in the usual sense,
see ibid. p.4.



2.4. Eilenberg and Steenrod: Foundations of algebraic topology 83

of 2-dimensional cells adjoined to the graph. [ . . . ]
The diagrams incorporate a large amount of information. [ . . . ] In the case

of many theorems, the setting up of the correct diagram is the major part of
the proof [1952, xi].

By the way, it is a quite interesting idea to regard commutativity of diagrams as
a homology relation: arrows (as geometric objects) become regarded no longer as
symbols expressing some algebraic matter of facts, but as objects having geometric
properties which in principle could be studied by geometric methods. In spite
of a mere application of algebra in topology, we have rather (the vision of) a
true interaction of both disciplines. While Eilenberg and Steenrod seem to make
this remark simply for the convenience of their readers (who to a large degree
might indeed be “combinatorially minded individuals”) without visibly drawing
any methodological conclusion from it, such methods will indeed be developed in
other contexts; see 5.4.3.

In the context of economy of proving, another important matter is duality.
The categorial process of dualization is present from the beginning in the project
of Eilenberg and Steenrod:

cohomology can be axiomatized in the same way as homology. It is only
necessary to reverse the directions of the operators ∂ and f∗ in the [ . . . ]
axioms and make such modifications in the statements as these reversals entail
[1945, 120].

So far, what is described by “reversing the arrows” (and, more elaborately, the
directions of the above-mentioned operators) is only a dualization procedure which
given a statement produces the dual statement without saying much about its
validity (for instance, the notions of direct and inverse limit, despite being “dual”
according to this procedure, turned out to be not really dual with respect to certain
properties, as we saw above). Later, Buchsbaum will succeed (after a first attempt
of Mac Lane’s) to give also a duality principle (i.e., a metatheorem which allows
to decide a priori about the validity of dual statements) to complete this duality,
see 3.1.2.2.

2.4.3 Mac Lane’s paper on duality for groups

[Mac Lane 1950] is an important paper in the history of category theory148 since
it contains the first definitions of concepts like free objects, direct product etc. in
terms of arrow composition. But this seems not to be the main objective of the
paper; Mac Lane is quite explicit about his motivation:

[In] the axiomatic homology theory of [[Eilenberg and Steenrod 1945,
1952]], the axioms for a homology theory refer not to the elements of the
(relative) homology groups, but only to certain homomorphisms; the dual
statements are exactly the axioms for a cohomology theory. [ . . . ] One of

148An overview of Mac Lane’s work on category theory up to 1979 is contained in [Kelly 1979].
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our chief objectives is that of providing a background in which the proofs
for axiomatic homology theory become exactly dual to those for cohomology
theory [p.494].

(This is why I discuss Mac Lane’s paper in the present context.) Mac Lane adds:
“This consideration was suggested to the author by his study of the manuscript of
[[Eilenberg and Steenrod 1952]]”. (This is why his paper and its announcement
[Mac Lane 1948] actually appeared before the Eilenberg–Steenrod book.)

In the quotation, Mac Lane speaks about “dual” statements, and if we wouldn’t
be acquainted with category theory (and the historian should always behave as if
he or she were not acquainted with the matter whose emergence he or she is recon-
structing), we wouldn’t hardly understand what he means. Actually, the quotation
was not taken from the beginning of the paper; Mac Lane, for the convenience of
his 1950 readers, takes a great run-up to his conception of duality. Here is how
the paper begins:

Certain dualities arise in those theorems of group theory which deal, not
with the elements of groups, but with subgroups and homomorphisms. For
example, a free abelian group F may be characterized in terms of the following
diagram of homomorphisms:

F
β ��

α
���

��
��

��
B

ρ

��
A

He then states and proves the theorem that F is free if and only if for any pair
of abelian groups A, B and any pair of homomorphisms ρ, α as in the diagram (ρ
onto) there exists a β making the diagram commute. Next, Mac Lane illustrates
the phenomenon of duality of two theorems by stating a second theorem from
group theory concerning the concept of an “infinitely divisible abelian group” which
actually involves what we would call nowadays the dual diagram. After having
proved also this second theorem, Mac Lane sums up:

In this pair of “dual” theorems the hypotheses differ only in the direction
of the arrows in the diagrams [ . . . ] and in the replacement of [ . . . ] a “homo-
morphism onto” by [ . . . ] an “isomorphism into“; the conclusions differ only
in the direction of the arrows and in the reversion of the order of factors in
the products [of homomorphisms]. In this sense free abelian groups are dual
to infinitely divisible abelian groups [p.486].

As a second example, he dualizes Theorem 10.1 from [Eilenberg and Mac Lane
1942a] (see section 2.2.5 above).

On p.488, he further develops the key idea contained in the very first sentence
of his paper:

We consider any statement S about groups which does not make reference
to the elements of the groups involved, but only to homomorphisms with
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these groups as domains and ranges, to the products of homomorphisms, to
subgroups and quotient groups, injection and projection.

(Note that the theorems from the first example a priori are no such statements;
rather, they establish characterizations—in terms of homomorphisms etc.—of con-
cepts of group theory originally defined using elements, and hence elements are
indeed needed in the proofs. But once the characterization is established, one can
drop the original definition and make the theorems the new definitions.) Mac Lane
next describes a dualization procedure for obtaining the statement dual to S. In
particular, the term “subgroup” is to be substituted for the term “quotient group”
throughout, and vice versa. Here, Mac Lane points to the problem that the inclu-
sion of subgroups is transitive, while a quotient group of a quotient group is not
a quotient of the original group; this problem is resolved on p.501.

Mac Lane on p.488 next provides two examples for the quite important fact
that the dual of a true statement about groups need not be true; the first example is
obtained by dualizing the statement “S is a normal subgroup of G” according to the
described procedure—since every quotient group is a “conormal quotient group”
in this sense while not every subgroup is normal. He concludes these preliminaries
by the following remark:

It is nevertheless true that the duals of a large class of true statements
about groups are true, and it is our objective to delimit this class of statements
[p.489].

[Corry 1996, 361] commented on this objective thus: “Mac Lane was publishing
the first article in which categories were used to solve a substantive mathematical
problem”. But did Mac Lane really solve the problem? Mac Lane himself later
wrote “one has till this day no real understanding of the class of theorems on
groups for which such duality would hold” [1978, 22]. Hence, the problem indeed
seems to be quite substantive, but Mac Lane’s paper rather achieved visibility for
it, and categorial conceptions were indispensable already in its formulation.

It is true, however, that Mac Lane makes considerable effort to cope with
the duality problem conceptually. First of all, he continues his case studies by
applying the dualization process to further examples of group theoretical state-
ments admitting suitable “arrows only”-formulations. In this context, he gives the
diagrammatical characterization of the direct product and the free product of
groups (p.489f) and notes that these determine both products uniquely up to an
isomorphism; in particular, he says “hence [this characterization] may serve as a
definition of the direct product”. But:

The proof of the existence of the direct product is not dual to the proof
of the existence of the free product, for both proofs involve reference to the
elements of the groups concerned. However, the proof that the direct product
is unique up to an isomorphism can be phrased so as to be exactly the dual of
the proof of the uniqueness of the free product up to an isomorphism [p.490].

Mac Lane closes these considerations with the following remark:
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It may be noted that our formulation of duality in terms of homomor-
phisms does not suffice to subsume all known “duality” phenomena [p.494].

He refers to [Hall 1940] for phenomena not subsumed, and then introduces a
distinction of “functional duality” and “axiomatic duality”; in the former case there
is a process assigning to each object a dual object and to each transformation a dual
transformation (a paradigm case is the theory of finite dimensional vector spaces)
while in the latter one only has the fact that axioms for the field in question can
be given which are invariant under the interchange of certain terms (for example,
of “point” with “line” in plane projective geometry). Mac Lane then says:

Even for discrete abelian groups or for discrete (infinite-dimensional) vec-
tor spaces, a functional duality does not exist. We aim to provide an axiomatic
duality covering such cases [ibid.].

The axiomatics Mac Lane provides actually are oriented towards categorial con-
cepts. He first defines the concept of category following [Eilenberg and Mac Lane
1945]—with the important difference (stressed by Mac Lane) that the collection
of arrows between two objects is explicitly required to be a set. Such a requirement
only makes sense if in one’s universe of discourse there are also collections which are
not sets; indeed, Mac Lane in the sequel (p.496) advocates NBG as a foundational
system149. After these preparations, he introduces the concept of “bicategory”
by axiomatizing the terms “injection homomorphism of a subgroup into a larger
group” and “projection homomorphism of a group onto a quotient group” which
allows him to define homomorphisms onto and isomorphisms into as “supermaps”
and “submaps”, respectively. I will not list the six relatively involved axioms he
states; an important feature is the axiom of canonical decomposition: every map-
ping α of the bicategory can be represented uniquely as a product α = κθπ, in
which κ is an injection, θ an isomorphism, and π a projection. The last axiom is a
supplementary set-theoretic assumption, namely that for each object A, the class
of all injections with range A is a set, and the class of all projections with domain
A is a set150.

In the next paragraph (p.498f), Mac Lane partly achieves his aim to delimit
the class of true statements about groups the duals of which are true. He notes
that all primitive statements in a category have one of the forms α = β, αβ = γ,
and he gives a typographical procedure to produce the statement dual to such a
statement (roughly by reversing products in primitive statements). He then says:

The dual of any axiom for a category is also an axiom; [ . . . ] the [ . . . ]
axioms are self-dual. A simple metamathematical argument thus proves the

Duality principle. If any statement about a category is deducible from
the axioms for a category, the dual statement is likewise deducible.

149The history of set-theoretical foundations for category theory is discussed in chapter 6; in
particular, the role of the requirement—which I would like to call the “Hom-set-condition”—will
be analyzed in section 6.4.1.
150As Bénabou points out, the axiomatic character of this statement was not obvious to people

less experienced with foundational matters than Mac Lane; compare section 7.4.2.
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—and similarly for bicategories when the additional primitive statements “α is an
injection”, “α is a projection” are taken into account.

2.5 Simplicial sets and adjoint functors

2.5.1 Complete semisimplicial complexes

What is nowadays called a “simplicial set” was originally called a “complete semisim-
plicial complex” (or for short a c.s.s. complex). Apparently, the concept was intro-
duced for the first time in [Eilenberg and Zilber 1950]. Let [m] denote the ordered
set (0, 1, . . . , m), and let all maps considered be weakly monotone. The definition
of c.s.s. complex given on p.507f reads:

A complete semi-simplicial complex K is a collection of “simplexes” {σ},
to each of which is attached a dimension q ≥ 0, such that for each q-simplex
σ and each map α : [m] → [q], where m ≥ 0, there is defined an m-simplex
σα of K, subject to the conditions

(8.1) If εq is the identity map [q] → [q], then σεq = σ.
(8.2) If β : [n] → [m], then (σα)β = σ(αβ).

Eilenberg and Zilber first wanted to have a general concept of complex which
covers also the singular complex and stays nevertheless accessible to certain meth-
ods of calculation: “the various constructions of homology theory (including ho-
mology with local coefficients, cup-products, etc.) can be carried out just as for
simplicial complexes”. This approach conducted them first (p.499) to the concept
of semi-simplicial complex (today called “semi-simplicial” or “bisimplicial” set; I
skip the definition). Contrary to expectations, the concept of c.s.s. complex is not
defined as a specialization of the one of semi-simplicial complex; however, it is
proved that these complexes are in fact such specializations. I will not analyze the
role played by the c.s.s. complexes in this first paper; they seem to become central
only in the second paper [Eilenberg and Zilber 1953]. Anyway, only shortly after-
wards Godement credited the concept defined above with having great relevance in
algebraic topology (see hereafter). The reader of the corresponding literature has
to struggle with a certain terminological confusion since it is this concept (and not
the one labeled semi-simplicial complex by Eilenberg and Zilber) which Godement
calls “complexe de chaînes semi-simplicial”; Kan (see below) sticks with the termi-
nology of Eilenberg and Zilber while Segal will speak later about semi-simplicial
sets.

In agreement with the main interest of the present book, we will consider
chiefly the progress in the treatment of such complexes made through the applica-
tion of categorial means. [Kan 1958b, 331], who refers to the two Eilenberg–Zilber
papers for the concept of c.s.s. complex, defines it in the obvious manner as a func-
tor, and this will be decisive for his methodology (the study of adjunctions of func-
tors, see 2.5.2). Correspondingly, Kan regards the category of c.s.s. complexes as a
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category of functors [Kan 1958b, 331]. The Bourbaki manuscript n°307 (whose au-
thor is Grothendieck, see [Krömer 2006b]), mentions “structures semi-simpliciales”
among the examples of constructions most suitably defined as functors—and lend-
ing thus support to the significance of the functor concept 〈#29 p.257〉. With
similar explicitness, Segal will later advocate the functorial point of view:

A semi-simplicial set is a sequence of sets A0, A1, A2, . . . together with
boundary- and degeneracy-maps which satisfy certain well-known conditions
[[Godement 1958]]. But it is better regarded as a contravariant functor A from
the category Ord of finite totally ordered sets to the category of sets [Segal
1968, 105].

Interestingly, Godement finds it too pedantic to consider finite totally ordered sets
as objects of a category:

Given an integer n ≥ 0, we denote [ . . . ] by ∆n the set {0, 1, . . . , n} [ . . . ].
Given integers p, q ≥ 0, we write Gpq for the set of functions from ∆p to ∆q;
obviously, one has laws of composition

Gpq × Gqr → Gpr

such that one can consider the set of objects ∆0, ∆1, . . . as a category (but
we will not adopt this too pedantic point of view. . . )151 [Godement 1958, 35].

However, Godement belies himself shortly after:

In the preceding definitions, one can replace, for every couple of numbers
p and q, the set Gpq by the subset G+

pq composed of the increasing functions
(in the broad sense) from ∆p to ∆q; one obtains the notion of semi-simplicial
chain complexes (resp. cochain complexes) [ . . . ].

One observes on the other hand that the definitions we have given [ . . . ]
extend to the case [of an] arbitrary abelian category K; for example, a semi-
simplicial chain complex (resp. cochain complex) in K is a contravariant (resp.
covariant) functor ∆+ → K, where we write ∆+ for the following category152

[ibid. p.36].

151“Étant donné un entier n ≥ 0, nous désignerons [ . . . ] par ∆n l’ensemble {0, 1, . . . , n} [ . . .
]. Étant donnés des entiers p, q ≥ 0, on notera Gpq l’ensemble des applications de ∆p dans ∆q ;
on a évidemment des lois de composition

Gpq × Gqr → Gpr

de sorte que l’on peut considérer l’ensemble constitué par les objets ∆0, ∆1, . . . comme une
catégorie (mais nous n’adopterons pas ce point de vue, par trop pédant. . . )”.
152“Dans les définitions précédentes, on peut remplacer, quels que soient p et q, l’ensemble Gpq

par le sous-ensemble G+
pq formé des applications croissantes (au sens large) de ∆p dans ∆q ; on

parvient alors à la notion de complexe de chaînes (resp. de cochaînes) semi-simplicial [ . . . ].
On notera d’autre part que les définitions que nous avons présentées [ . . . ] s’étendent au

cas [d’une] catégorie abélienne quelconque K; par exemple un complexe de chaînes (resp. de
cochaînes) semi-simplicial dans K est un foncteur contravariant (resp. covariant) ∆+ → K, en
notant ∆+ la catégorie suivante”.
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As one expects, ∆+ denotes precisely the category just rejected as too pedantic
(here with monotoneously increasing mappings). Probably the applications in-
tended by Godement, contrary to the (more far-reaching) applications intended
by Kan, do not necessitate this point of view (and to adopt such a point of view
without necessity would indeed be pedantic). This is suggested by the following
note commenting on the definition of the notion of semi-simplicial complex:

It might be useful to underline that semi-simplicial complexes actually
play a role much more important in topology than simplicial complexes, al-
though this fact does not follow from the examples given here153.

Godement gives further details as to the significance attributed to the concept
in his preface; he recalls and stresses again the points evoked by Eilenberg and
Zilber:

By “simplicial complexes” we mean chain (or cochain) complexes on which
one has a “boundary operator” allowing one to carry out formally the classical
simplicial calculations; one encounters this situation not only in the classical
theory of polyhedra but also in singular homology, Čech cohomology and
sheaf theory. Since moreover the recent work of Kan seems to show that these
complexes constitute the natural range of validity of a complete homotopy
theory, one can affirm that the general notion of simplicial complex (essen-
tially due to Eilenberg and Zilber) shall play an essential role in algebraic
topology154 [1958, ii].

By the “classical simplicial calculations”, Godement means, as turns out, a treat-
ment of the various “products” (cartesian product, cup-product etc.). It seems that
these products, while originally limited to the context of simplicial complexes, can
now be used wherever simplicial sets are available155. This means that there has
been made a conceptual progress of a different kind compared to the one made
in the Eilenberg–Steenrod book, far less axiomatic and far more calculatory in
nature. Despite this, the influence of this progress was enlarged by the application
of categorial language, especially through the work of Daniel Kan, as we will see
now.
153“Il peut être utile de préciser que les complexes semi-simpliciaux jouent actuellement en

topologie un rôle beaucoup plus important que les complexes simpliciaux, bien que ce fait ne
résulte pas des exemples données dans ce §”.
154“Quant aux « complexes simpliciaux », il s’agit des complexes de chaînes (ou de cochaînes)

dans lesquels on a des « opérateurs de face » permettant d’effectuer formellement les calculs
simpliciaux classiques : situation que l’on rencontre non seulement dans la théorie classique
des polyèdres, mais aussi en homologie singulière, en cohomologie de Čech, et en théorie des
faisceaux. Comme de plus les travaux récents de Kan semblent prouver que ces complexes consti-
tuent le domaine naturel de validité d’une théorie complète de l’homotopie, on peut affirmer que
la notion générale de complexe simplicial (due essentiellement à Eilenberg et Zilber) est appelée
à jouer un rôle essentiel en topologie algébrique”.
155In the axiomatic context of [Eilenberg and Steenrod 1952], the products are barely mentioned

(according to Cartan’s review MR 14:398b, they were scheduled for a second volume which never
was written); [Dold 1980] who restricts his presentation to the singular theory uses actually the
Eilenberg-Zilber theorem to justify the construction of the products.
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2.5.2 Kan’s conceptual innovations

Kan published in 1958 a whole series of papers concerning c.s.s. complexes. Com-
paring the dates of appearance of the reviews of Kan’s papers in Mathematical
reviews (spreading from 1959 to 1962), it turns out that the most “categorially-
shaped” paper [Kan 1958a] (which conceptually is central for the series) is among
the papers which are reviewed latest. Apparently, it was considered as more urgent
to review articles concerning the applications in algebraic topology than to review
the article concerning new categorial methods—which not only was the conceptual
cornerstone of the whole series of papers but moreover proved later to be far more
influential: the concepts of adjoint functor and limit turned out to be central in
the creation of a real theory of categories with interesting problems, and they were
fruitful not only in homotopy theory, but in many other branches of mathematics
as well.

[Kan 1958a, 294] takes “homology theory”156 as his point of departure. There,
according to Kan, an important role is played by pairs of functors consisting of a
Hom-functor on the one hand and of a functor sending two objects to their tensor
product on the other hand. There exists a natural equivalence of the form

α : Hom(· ⊗ ·, ·) → Hom(·, Hom(·, ·)).

Kan generalizes this situation as follows: for covariant functors S : X → Z and
T : Z → X , S is called a left adjoint of T and T a right adjoint of S if and only if
there is a natural equivalence α of the form (and this notation is mine, not Kan’s):

α : Hom(S(·), ·) → Hom(·, T (·))

— and similarly for functors in several variables157. The original example has
the task to give the reader a grasp of the concept but is not among the decisive
applications which Kan will make of it (see below; I will analyze this kind of
“nonresistant examples” in 5.2.3.) When Kan stresses that in this example the
Hom-functors outside the parentheses play a secondary role compared to the last
Hom-functor, he certainly does not want to make us believe that he himself needed
to understand this in order to penetrate to the general concept; rather, he wants
to prevent his readers from barking up the wrong tree.

Kan gives the categorial concept of limit its definite form. I will not enter
the technical details of Kan’s definition here; what is crucial is that Kan ulti-
mately attains a complete categorial characterization which not only allows one to
speak about direct and inverse limits in arbitrary categories but also to identify as
limits various constructions not subsumed under the former more restricted con-
cepts. While Eilenberg and Mac Lane always focussed on a particular construction
(namely direct and inverse limits with respect to a directed set), Kan stresses the

156this means, homological algebra in the sense of [Cartan and Eilenberg 1956]; see section 3.1.
157I will mostly not distinguish between left and right adjoints.
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universal property158; but also other constructions have such a property (for in-
stance, the direct product can now be characterized as a limit). This is achieved
by varying not only the codomain category, but also the domain category of the
limit functor (in particular, by using not exclusively partially ordered sets; Kan
gives examples where the domain categories are not ordered sets—p.309f, 323).

With this further extension of the limit concept, the question comes to the
fore of what are the conditions for existence of limits in given categories. Kan uses
the concept of adjoint functor to give a necessary and sufficient condition for the
existence of limits.

Now, as already explained, Kan does not investigate such problems in or-
der to develop category theory as an independent research discipline. The main
applications Kan makes of the concepts of adjoint functor and limit are, perhaps
somewhat to the surprise of the modern reader, in the field of c.s.s. complexes.
Objects of this type are repeatedly put in relation with the new concepts in [Kan
1958a] (see in particular p.327) and are the exclusive subject matter of the sub-
sequent paper [1958b]. [Barr and Wells 1985, 63] discuss shortly the connection
between Kan’s work and simplicial sets.

The examples of adjunctions which are most important in Kan’s papers are
the following: the functor assigning to each topological space its singular simplicial
set is right adjoint to Milnor’s geometric realization of a simplicial set [1957] (which
assigns topological spaces to simplicial sets); the functor assigning to a space the
product with the unit interval is left adjoint to the functor assigning to a space the
space of all its paths (p.304); a similar situation holds between the constructions
known to topologists as suspension and loop159. Apparently, adjunction in most
of these cases serves to make a “step aside” in the lifting of limits (see p.318ff of
Kan’s paper).

2.6 Why was CT first used in algebraic topology and not
elsewhere?

Some readers may find that this question is a quite natural one, and may wish that
a book on the history of category theory would provide an answer to the question.
Now, Andrée Ehresmann did point out to me in personal communication that in
her opinion an exclusive historical reduction of CT to problems of algebraic topol-
ogy would be too one-sided; she stressed the importance that Bourbaki attached
already before the war to an explication of the concept of structure. The rela-
tions between the history of category theory and this context have already been
investigated by [Corry 1996]; I make some additional remarks in section 5.3.1.4.

158When Cartan used the limit concept in sheaf theory, he, while obviously thinking of limits
in the sense of Eilenberg and Mac Lane, almost exclusively relied on this universal property; see
3.2.2.2.
159The construction of suspension was introduced by Freudenthal (see [Eilenberg and Steenrod

1952, 48] for a reference) and serves to eliminate homology classes.
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Mac Lane, in his historical work, exhibits little timidity in facing to this
kind of questions and hypotheses. In [1988a, 335] (in view of Charles Ehresmann’s
interest in the concept of groupoid flowing from differential geometry), he advances
the thesis that category theory could have equally well emerged from differential
geometry; at another place, he suggests that the concept of adjoint functor could
have emerged from the work of Marshall Stone in functional analysis [1970]. As
he describes in [1996, 131], during the CT-meeting in Tours 1994 the following
question was discussed: “If Eilenberg and Mac Lane had not formulated category
theory, who would ever have done so?”; Mac Lane proposes a whole bunch of such
hypothetical contexts of emergence (resp. authors)160.

In all this, an overall attitude towards the nature of mathematical innova-
tions is manifest, namely the one sketched by [Stork 1977, 24ff] (referring to other
authors) according to which simultaneous innovations are in reality the rule, not
the exception, and the fact that they do not lead very often to parallel publications
is just due to the by now relatively well functioning mechanisms for the avoiding
of priority quarrels. Obviously, one can choose the degree to which one entrusts
oneself to such a position, and the same is true about the significance of hypothet-
ical history. A weak variant would be to ask first of all which peculiarities specify
the actual situation of emergence and whether these are sufficient to explain that
this situation became a situation of emergence and no other. In the present case,
I see at least the following peculiarities:

• the necessity to consider direct and inverse limits on arbitrary directed sets;

• the translation of topological problems into algebraic ones161;

• the stress put on morphisms;

• the interest in homomorphisms not necessarily injective or surjective;

• the study of objects up to isomorphy;

• the search for a systematic treatment of the duality of situations.

There virtually was no context around 1940 sharing all these features (mutatis
mutandis) with algebraic topology.

160A participant of the meeting remembered that Mac Lane attacked the question in the fol-
lowing way: he asked the audience to make proposals—and commented on these proposals im-
mediately, so to say, by virtue of his higher authority.
161A slogan of algebraic topology is to leave out just so much information that one comes

into a position to work comfortably with one’s objects without losing their essential features.
It looks astonishing at first glance that in the historical development of this discipline, functors
compared to the classical invariants have led to progress on both levels—they provide more
information, and they are easier to manipulate. Intuitively, one would perhaps think that both
things cannot increase simultaneously; but there is obviously no “constant weight in sum” across
different historical stages. The original objects (topological spaces) possess a richer structure but
are also more difficult to grasp in their essential features than the objects on which one transfers
the problem, and functorial transfers compared to numerical invariants not only preserve more
structure (“information”) but also provide a larger target for manipulations.



Chapter 3

Category theory in Homological
Algebra

Before around 1955, CT was almost exclusively used in algebraic topology and
served there, at least up to Eilenberg and Steenrod, mainly as a conceptual (or
linguistic) framework for the organization of a knowledge system. Arrows and ar-
row composition played an important role there, and the new framework empha-
sizing these aspects changed considerably the organization of topology as a whole
(compare [Volkert 2002] chapter 6), but this change was rather a shift of emphasis
from problem solving to conceptual clarification than direct progress in solving
the problems formerly considered as central in the discipline (as, for instance, the
classification of 3-manifolds). In the domain of algebraic topology, it was Kan who
entered first a level of conceptual innovation on which CT came to serve also as a
means of deduction. This means that results in the topological context have been
obtained by the application of results established on the categorial level—results
deeper than those available using solely the base concepts of category theory, i.e.,
results the proof (and already the formulation) of which used new, more involved
concepts like adjoint functors and the general limit concept162.

A similar shift of interpretation of CT took place at about the same time in
another context, namely homological algebra. During the creation and the further
development of this discipline, the relevant concepts and ideas have been steadily
transformed to fit more and more closely the conceptual framework of CT; these
transformations of concepts allow one especially well to highlight and to analyze
the above mentioned shift of interpretation. For this reason among others, a whole
chapter will be devoted to their study.

What is homological algebra about? To put it simply, it is the study of alge-
braic objects by homological methods. In the 1940s, several cohomology theories

162Notice that I stress the use of these concepts, not the need to use them. I am interested in
the pragmatic aspect here, not in proof-theoretical analysis.
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for algebraic object types were developed; the book [Cartan and Eilenberg 1956]
extracted from these particular theories a general procedure for developing theo-
ries of this kind. [Buchsbaum 1955] and [Grothendieck 1957] transferred this pro-
cedure, presented by Cartan and Eilenberg for a category of modules, to a type
of categories characterized purely on a categorial level (of course, categories of
modules are of this type; other examples are categories of certain sheaves). Thus,
it became possible to develop a theory of sheaf cohomology independently from
particular assumptions about the underlying topological space. This achievement
was of particular importance for algebraic geometry, as we will see at the end of
the present and (in more detail) in the next chapter.

The application of homological methods to algebraic situations became possi-
ble by the insight that homology and cohomology are properties one can reasonably
speak about in any situation where a chain complex structure is given. Inciden-
tally, this explains also to a certain degree why categorial concepts (or at least
considerations about arrows) are important tools in the context here described.
Certainly, there are historical interrelations between the identification of chain
complex structures in contexts beyond the traditional topological context, on the
one hand, and the insight of [Eilenberg and Steenrod 1952] that the usual calcu-
lation procedures for homology can be decomposed in several conceptual steps,
the last of which consists in a consideration of chain complexes163, on the other
hand; I do not try here to disclose these interrelations (maybe this would amount
to answering a kind of “chicken and egg” question).

What is novel in the context here described, however, is that CT is used164

as a means of deduction. For the proofs and the conceptual framework of Grothen-
dieck’s paper make use of propositions about certain categorial constructions: di-
agram schemes, generators, infinite products, equivalence of categories. By this
achievement, CT as a research subject enters a phase of great activity, compared
to the preceding decade. However, the new concepts introduced are of interest
precisely because of their applications; thus, the criterion problem (the problem
of what deductions and definitions to make) was met with in an expected but
unsatisfactory way. There is a second possible question: why does one just apply
category theory (and no other mathematical theory) to the given problems? The
relation of a theory to its applications cannot be separated from the relation of a
problem to its means of solution. This second question is historically interesting,
since if one considers CT just as a language—as Eilenberg and Mac Lane did—it
is difficult to imagine it be as fruitful as Grothendieck thought it to be.

One has to regard these questions critically. As already pointed out in 1.2.2.3,
there is not just a formal theory from the very beginning the “relevant” pieces of
which are found by a kind of “distillation” in the course of history. The feeling that
such a choice has been made and needs to be explained comes up only belatedly
when such a theory independent of its early applications did finally emerge. What

163see 2.4.
164Compare n.162 above.
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is given from the beginning, rather, are certain concepts to be explored; elements of
a theory flow from such explorations, and these elements appear later as being the
result of a reasonable choice among possible propositions. The fact that members
of a community have this impression simply reveals that the community is held
together by a common sense.

In this chapter, we will concentrate on the contributions of Cartan and Eilen-
berg, Buchsbaum, and Grothendieck’s Tôhoku paper; neither the prehistory nor
the more recent history165 of homological algebra will be treated in detail. These
gaps are filled to some extent by the existing historical secondary literature on
homological algebra: [Mac Lane 1978], [Hilton 1987], [Weibel 1999]. Here are just
some short remarks:

As to the origins of the discipline, the editors of the Hopf Selecta [1964] when
reprinting [Hopf 1942] make interesting remarks about the content of this paper
(p.186); according to them, it contains the germ of both the algebraic and the
topological ideas of later homological algebra, and Hopf’s subsequent papers treat
both the cohomology of groups and the concept of free resolution of modules. For
further historical information, they point to [Mac Lane 1963a].

Gelfand and Manin try to identify periods in the development of the disci-
pline:

The history of homological algebra can be divided into three periods. The
first one starts in the 1940’s with the classical works of Eilenberg and Mac
Lane, D.K.Faddeev, and R.Baer and ends with the appearance in 1956 of the
fundamental monograph [[Cartan and Eilenberg 1956]] which has lost none
of its significance up to the present day.

A.Grothendieck’s long paper [[Grothendieck 1957]] (its appearance has
been delayed three years)[166] marks the starting point of the second period,
which was dominated by the influence of Grothendieck and his school of
algebraic geometry.

The third period, which extends up to the present time, is marked by
the ever-increasing use of derived categories and triangulated categories. The
basic technique [ . . . ] was slow in spreading beyond the confines of algebraic
geometry. Only in the last fifteen years has the situation changed [Gelfand
and Manin 1996, v].

(When mentioning D.K.Faddeev among the classical works, they give no reference
but think perhaps of [1947]167. I have not yet had the occasion to see this paper.)
I will not discuss in detail derived and triangulated categories; some remarks are
contained in section 4.2.2.
165Some more recent applications of homological algebra took place in algebraic topology, in

so-called global analysis (differential equations, D-modules, perverse sheaves; see [Kashiwara and
Schapira 1990]), and in operator theory. For a history of D-modules, see Houzel [1990, 1998].
166This statement is erroneous, as we will see later on; while a certain delay can be reconstructed

from [Colmez and Serre 2001], it is amply clear that Grothendieck made the main discoveries
contained in this paper only during a stay at Kansas in 1955. Gelfand and Manin confound this
probably with the case of [Cartan and Eilenberg 1956] (explored in section 3.1.1).
167I thank Rainer Schulze-Pillot for the corresponding hint.
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3.1 Homological algebra for modules

3.1.1 Cartan and Eilenberg: derived Functors
Homological algebra (the term as well as the systematic development of the subject
matter) was introduced in the 1956 book by Henri Cartan and Samuel Eilenberg.
Actually, publication of this book was delayed. The preface is dated September,
1953; moreover, Buchsbaum’s thesis (published as [Buchsbaum 1955]; see 3.1.2.1)
appeared before the Cartan and Eilenberg book, while Buchsbaum contributed
also an appendix to this book where he writes “No proofs will be given here;
they will be found in a separate publication” (p.379)—which indicates that this
appendix, while finally appearing one year later than [Buchsbaum 1955], was orig-
inally conceived as a kind of announcement of this paper. In the bibliography of
[Yoneda 1954, 193], the book is referred to as “to appear soon”. Jacques Dixmier
told me privately that it was none other than André Weil who was responsible
for the delay by refusing to publish the book in a series then edited by him.
If Dixmier’s memory is right, it was man-of-the-world’s generosity when Cartan
omits this unpleasant episode in writing simply that he does not know why the
book appeared only in 1956 [Bass et al. 1998, 1345]. There is some evidence that
André Weil was not friendly to category-theoretic approaches; see my description
of the Bourbaki discussion on categories in [Krömer 2006b].

3.1.1.1 The aims of the 1956 book

The subject matter of [Cartan and Eilenberg 1956] is best described in the preface
of the book itself from which I shall quote now:

During the last decade the methods of algebraic topology have invaded
extensively the domain of pure algebra, and initiated a number of internal
revolutions. The purpose of this book is to present a unified account of these
developments and to lay the foundations of a full-fledged theory.

The invasion of algebra has occurred on three fronts through the con-
struction of cohomology theories for groups, Lie algebras, and associative
algebras[168 ]. The three subjects have been given independent but parallel
developments. We present herein a single cohomology (and also a homology)
theory which embodies all three; each is obtained from it by a suitable spe-
cialization.

This unification process has all the usual advantages. One proof replaces
three. In addition an interplay takes place among the three specializations;
each enriches the other two.

The unified theory also [ . . . ] applies to situations not covered by the
specializations. An important example is Hilbert’s theorem concerning chains

168The case of Lie algebras is treated in [Chevalley and Eilenberg 1948], the case of associative
algebras in [Hochschild 1945] (continued in [Hochschild 1946], a paper not cited by Cartan and
Eilenberg), and the case of modules for groups in [Eilenberg and Mac Lane 1947]. The historical
secondary literature concerning cohomology of abelian groups covers [Mac Lane 1976a, 1978] and
[Brown 1982]; for Lie algebras, see [Hess 1999, 761f].
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of syzygies in a polynomial ring of n variables. We obtain his result (and
various analogous new theorems) as a theorem of homology theory.

The initial impetus which, in part, led us to these investigations was
provided by [ . . . ] Künneth [’s study of] the relations of the homology groups of
a product space to those of the two factors [in [Künneth 1923]169 ]. He obtained
results in the form of numerical relations among the Betti numbers and torsion
coefficients. The problem was to strengthen these results by stating them in
a group-invariant form. The first step is to convert this problem into a purely

#5algebraic one concerning the homology groups of the tensor product of two
(algebraic) complexes. The solution [ . . . ] involves not only the tensor product
of the homology groups of the two complexes, but also a second product
called their torsion product. The torsion product is a new operation derived
from the tensor product. The point of departure was the discovery that [this]
process of deriving [ . . . ] could be generalized so as to apply to a wide class of
functors. In particular, the process could be iterated and thus a sequence of
functors could be obtained from a single functor. It was then observed that
the resulting sequence possessed the formal properties usually encountered in
homology theory [1956, v].

Obviously, this text is intended to provide the reader with an idea of what is
achieved in the book in relation to what has already been achieved beforehand;
moreover, the way the authors took to get to their theory is described.

In my opinion, the observation is crucial that the sequence of functors de-
scribed behaves formally as in homology theory. Order is reversed when from
now on homology groups are defined as derived functors: originally, one started
from homology groups (of topological complexes) and discovered eventually the
torsion product, a special case of the derivation procedure; one isolated then this
procedure and took it as a new starting point; naturally, one obtained the usual
homology groups (the original point of departure) as a special result. Such rever-
sions of order are in my opinion a central feature of conceptual development of
twentieth century mathematics.

The problem with which Cartan and Eilenberg are concerned is to deter-
mine to what degree a given functor preserves exactness of a given sequence170.
Exactness is an algebraic property; what one tries here is a transfer of methods
developed in topology into algebra. If a homology or cohomology theory in the

169Obviously, Künneth did express his results in terms of invariants, not of groups; see section
2.1.
170Leo Corry says that “a detailed account of the rise of category theory should thus describe

systematically the connections between the formulation of the central concepts of the theory and
[exact sequences]” [1996, 349], but he does not provide such an account; I will not do so either
(although agreeing with Corry that these connections should indeed be described systematically).
The most detailed account of the history of the concept of exact sequence itself in the literature
is provided in [Dieudonné 1989, 85ff]; Dieudonné mentions the example in Hurewicz’ work, but
not the one in [Fox 1943] (for both, see 2.3.4.1) and points out that further important steps were
taken by [Eilenberg and Steenrod 1945] and [Kelley and Pitcher 1947, 687]. Another historical
account is [Shields 1987]. Bourbaki had a discussion about this concept (shortly presented in
[Krömer 2006b]).
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sense of Eilenberg and Steenrod is to be obtained, one has first to make sure that
the axioms have a meaning at all in the algebraic setting. For example, a purely
algebraic concept of chain homotopy is introduced with respect to which homology
is then homotopy invariant. I discuss a similar change of interpretation of the long
exact (co-)homology sequence in 3.4.1.

3.1.1.2 Satellites and derived functors: abandoning an intuitive concept

In the sequel to the preface (not reproduced here), two procedures are presented
which can be used to obtain the desired sequence of functors. Satellites are defined
recursively, derived functors once and for all. There is a chapter III on satellites
from p.33 on. Cartan and Eilenberg note immediately that this chapter will not
be needed in the rest of the book but that “the reader will find it well worth his
trouble to familiarize himself with the technique of proofs based on diagrams”.

Hence, one has the impression that the chapter on satellites has merely the
task to offer some exercise in proof techniques but not to contribute to the system-
atic developments of the remainder of the book. In the preface, to the contrary, one
has the impression that Cartan and Eilenberg arrived themselves at their theory
precisely through the recursive treatment of derivation (i.e., the satellites instead
of the derived functors; the operational scheme would be: “append a kernel or cok-
ernel to a sequence”)—and this is actually how the key idea of the procedure can be
explained most easily to students: the aim is to “make exact” a sequence. This and
nothing else is the basic operational intuition behind the whole theory that has
to be grasped once and for all, and this fact is in principle acknowledged by Car-
tan and Eilenberg simply because the preface reads as it reads171. The relevance
judgment concerning the chapter on satellites is most probably not challenging
the principal relevance of the underlying idea, but only the development of this
idea in an admittedly intuitive but manipulatively disadvantageous framework172.

However, Satellites were used in [Eilenberg 1951], [Buchsbaum 1960], and
[Mitchell 1965, 191ff].

3.1.1.3 The derivation procedure

The procedure rests on a certain number of important concepts and results173. A
basic ingredient for the applicability of homology theory in the exactness problem
is the concept of abstract chain complex, due to Walther Mayer (see 5.1.2)—for
it is only due to this concept that the homological methods developed in topol-
ogy can be transferred to algebra at all. The homological algebra of Cartan and
Eilenberg rests on the insight that one can speak about (co)homology whenever
there is a module with an endomorphism d with dd = 0, no matter whether this
171Cartan mentions in [Bass et al. 1998] that they asked Steenrod to write the preface, but this

does certainly not alter their complete agreement with the contents of the preface.
172Compare section 4.1.2.1 for a similar situation concerning Zariski topology.
173A short presentation of it can be found, besides the preface of [1956], in [Dieudonné 1989,

147ff].
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endomorphism has been obtained by a topological calculation (as it is the case
in algebraic topology) or not. This insight may have derived from cohomology of
groups; it was crucial for the application of homological algebra in sheaf theory,
see 3.4.1.

A particular type of chain complexes which are even exact sequences are the
so-called resolutions. The following result is central for the project of Cartan and
Eilenberg: each module A has injective and projective resolutions. A module Q is
called injective if and only if for modules A′ ⊂ A, module homomorphisms from A′

to Q can be extended to module homomorphisms from A to Q. Dually, a module
P is called projective if and only if for each module A a module homomorphism
from P to a quotient A′′ of A can be extended to a module homomorphism from P
to A [1956, 6ff]. A projective resolution of a module A is an exact sequence · · · →
Xn

dn→ Xn−1 → · · · d1→ X0
ε→ A → 0 such that all Xn are projective; an injective

resolution is defined dually [1956, 75ff]. As to the history of the concept of an
injective module, Cartan and Eilenberg make the following indications: “Injective
modules (under a different terminology) were considered by [[Baer 1940]] who with
minor variants has proved [the ideal-theoretic necessary and sufficient condition
for being injective and the theorem that every module is a submodule of an injective
module]” [1956, 10]. [Weibel 1999, 816] says that the concept of projective modules
was introduced by Cartan and Eilenberg themselves.

The proof of the result that each module has projective resolutions uses
rather simple means. Cartan and Eilenberg consider the homomorphism FA → A
(p.5) where FA denotes the free module with basis A, A itself a module; this
homomorphism comes from the identity A → A (via the universal property of the
free module). Cartan and Eilenberg next consider the exact sequence

0 → RA → FA → A → 0;

(where RA denotes, consequently, the kernel of FA → A). This sequence is used
to show that a module is projective if and only if it is a direct summand of a
free module (p.7). With this theorem 2.2, they can show that each module is the
quotient of a projective module (it suffices to take the above mentioned sequence
since by theorem 2.2, in particular a free module is projective). By successive
application of this second theorem, they show that each module has a projective
resolution (p.77)174.

Interestingly, the proof in the injective case does not run in completely paral-
lel (“dual”) manner; as Cartan and Eilenberg said, they take this proof “with minor
variants” from Baer. Aspects of this proof’s idea will be discussed in connection
with Grothendieck’s working out of it for the case of sheaves in section 3.3.3.4.

The significance of the existence of “enough” injective or projective objects
for the process of derivation of functors becomes clear on p.82 of [1956]. When the
given functor is applied to the given resolution of a module, the homology groups of
174As explained in n.114, Eilenberg and Mac Lane in [1942a] used only free resolutions whose

existence depends on certain properties of the base ring.
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the chain complex so obtained measure the exactness of the functor when applied
to the given resolution. The next important step is to settle that these homology
groups do not depend on that resolution, but only on the resolved module A (and
perhaps on other arguments of the functor); this means that one can consider the
attribution of these groups as the object function of a functor (the derived functor)
defined on the category of modules. The third result concerns the application of the
given functor T to arbitrary exact sequences (which are not necessarily resolutions
of A): the homology groups of the complex so obtained can be calculated from the
values of the derived functor. So, the concept of derived functor achieves indeed
what was hoped for: one has now a measure at one’s disposal of how much a given
functor destroys the exactness of a given sequence.

Actually, the last two results do not make explicit use of any results of module
theory; their proof (as much as the definition of the relevant concepts) can be
repeated without essential changes in certain categories later called “abelian” with
some additional properties (as the existence of “enough” injective or projective
objects). So, the first impression that the application of category theory is rather
marginal here since one deals exclusively with modules is misleading. The concept
of derived functor allows one to describe a general procedure for the definition of
homology groups for given objects of various kinds.

When the described procedure of derivation is applied to the functor Hom,
it turns out that Ext = Ext1 is the first derived functor in this case. This shows
the link between the first joint paper by Eilenberg and Mac Lane and the Cartan
and Eilenberg book.

3.1.2 Buchsbaum’s dissertation

3.1.2.1 The notion of exact category

It was the task of David Buchsbaum’s dissertation (supervised by Eilenberg) to
work out the above mentioned more general context for the procedure developed in
[Cartan and Eilenberg 1956]. Buchsbaum’s results are contained in the published
version of his thesis [1955] and already outlined in an appendix that he contributed
to [Cartan and Eilenberg 1956] (p.379-386)175.

Buchsbaum, transcending the framework of the Cartan and Eilenberg book,
emphasizes that the procedure of derivation can already be realized for objects
of a type of categories that share some important properties with a category of
modules. He does not yet call these categories “abelian”, as later suggested by
Grothendieck, but “exact”; however, this concept is more or less equivalent to
Grothendieck’s concept of abelian category176. Just like category theory (or, more
precisely, the language of categories) was conceived at first as a general linguistic
framework for expressing facts about the commutativity of diagrams, the theory of

175For the chronology of these two texts, see section 3.1.1.
176For the definition of abelian category, see [Grothendieck 1957], [Gabriel 1962], [Mac Lane

1961], [Mitchell 1965], [Gelfand and Manin 1996] or [Dieudonné 1989, 155ff].
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exact (or, respectively, abelian) categories is such a framework for the expression
of facts about the exactness of sequences.

It is important here to note some historical observations concerning these
competing terminologies. Already [Mac Lane 1950] uses the terminology “abelian
category” for a concept related but not completely equivalent to the concept now
commonly bearing this name177. Thus, Buchsbaum’s exact categories are not the
same as Mac Lane’s abelian categories; consequently, it is not astonishing that
Buchsbaum who explicitly refers to Mac Lane’s work develops a new terminology
for his own concept—precisely to distinguish it from Mac Lane’s. Grothendieck, on
the contrary, developed his theory at first without knowledge of the work by Mac
Lane and Buchsbaum (see 3.3.2.1); so it is again not astonishing that he chose
a terminology already used differently; originally, he spoke even about “classes
abéliennes” (see 3.3.2.3).

Mac Lane, in his various historical accounts of his own work in category the-
ory, repeatedly discusses his tentative but unsuccessful definition and its context;
see for instance [1988a, 359] or [1976b, 136]. I do not enter here the analysis of
this “clumsy prelude to the development of Abelian categories” [1971b, 205]; see
[Corry 1996, 363ff]. I just mention two interesting things: this first attempt at
definition was not motivated by the task to transfer the derivation of functors to
new contexts, but by considerations of duality—and it was not successful since a
too restrictive criterion of identification was used; see 5.3.2.2.

3.1.2.2 Buchsbaum’s achievement: duality

While developing a general framework for the derivation procedure, Buchsbaum’s
work continues also the paper [Mac Lane 1950] insofar as Buchsbaum’s primary
motivation was apparently to make explicit the latent duality in [Cartan and
Eilenberg 1956]; that is at least how he presents the matter in his appendix to
[Cartan and Eilenberg 1956]. This parallels the relation between [Mac Lane 1950]
and [Eilenberg and Steenrod 1952]; the conceptual problem of duality was at least
two times the driving force for important progress in category theory.

The above mentioned latent duality is already stressed by Cartan and Eilen-
berg themselves:

In this chapter we present all the algebraic tools of homology theory [ . . . ].
The treatment here differs from the standard one in that great care is taken
to maintain all symmetries and thus keep the system self-dual at all times.
[ . . . ] The reader will have ample opportunities to convince himself that the
preservation of this kind of a duality is indispensable [Cartan and Eilenberg
1956, 53].

Nevertheless, Cartan and Eilenberg cannot help treating separately right and left
derived functors respectively and to distinguish even the different possible vari-
ances of the functors (see also 3.3.3.3). Mac Lane’s paper on (his) abelian categories
177Actually, Mac Lane’s concept derives from his concept of bicategories which already share

essential features with abelian categories, such as the decomposition property (see 2.4.3).
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had the similar aim to avoid a repetition of dual argumentations in the case of
[Eilenberg and Steenrod 1952].

In Buchsbaum’s solution of the duality problem there is an interplay of two
concepts: the concept of dual category (which Buchsbaum denotes A∗ when the
category A is given) and that of exact category. The definition of the concept of
dual category is already given in [Eilenberg and Mac Lane 1945, 259] (compare
section 2.3.1.1); thus, Buchsbaum’s progress with respect to Cartan and Eilenberg
consisted not in giving this definition, and it was not this concept that Mac Lane
lacked for the realization of his aim concerning [Eilenberg and Steenrod 1952]. The
concept of dual category allows one only to make explicit the dualization process,
i.e., to explain how the proposition dual to a given proposition is obtained (reverse
the arrows); but to avoid dual argumentations, one needs moreover (and more
importantly) a principle of duality, i.e., a metatheorem establishing under which
circumstances the dual proposition so obtained is valid.

The principle of duality given by Buchsbaum makes use of his concept of
exact category; it reads: with A, also A∗ is exact [Cartan and Eilenberg 1956,
381]. With this theorem, Buchsbaum can settle the duality problem for [Cartan
and Eilenberg 1956] and [Eilenberg and Steenrod 1952]. In more detail, he obtains
the following results:

• “In treating derived functors, it suffices to consider left derived functors of
a covariant functor of several variables; all other types needed may then be
obtained by a dualization process” [Buchsbaum 1955, 1]; obviously, the duality
principle serves to make sure that valid propositions on derived functors are
obtained by the described procedure.

• “The axiomatic homology and cohomology theories of [[Eilenberg and Steenrod
1952]] may be defined using an arbitrary exact category A as the range of
values of the theory. Thus, replacing A by A∗ replaces a homology theory by
a cohomology theory, and vice versa” [Cartan and Eilenberg 1956, 385]. This
conceptual clarification of the relation between homology and cohomology
theories apparently was what [Mac Lane 1950] aimed at, but did not achieve,
due to a definition of abelian category not serving the purpose; see 3.1.2.1.

• “The Pontrjagin duality for discrete and compact abelian groups readily shows
that the category C of compact abelian groups is the dual of the category M
of discrete abelian groups. Thus we conclude that C satisfies Axioms V , V I
and V I∗. In fact, the injectives are the toroids [ . . . ] and the projectives in
C are those compact groups whose character groups are divisible” [Cartan
and Eilenberg 1956, 386]. The axioms mentioned concern the existence of
(finite) direct sums and of (enough) projective and injective objects. Besides
his duality principle, Buchsbaum uses that the additional axioms (not being
part of the definition of exact category) are dual to each other (V is even
autodual).
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In fact, what Buchsbaum does here is to establish additional principles of duality
(of a more restricted kind): the proposition <A is the range of values of a homology
theory > is valid if and only if this is the case for the proposition <A∗ is the
range of values of a cohomology theory>; the proposition <A is an exact category
satisfying axioms V , V I and V I∗> is valid if and only if this is the case for the
proposition <A∗ is an exact category satisfying axioms V , V I and V I∗>. These
“duality principles for special concepts” use the concept of dual category to enlarge
the scope of these special concepts.

Buchsbaum explains why his duality theory was outside the scope of [Car-
tan and Eilenberg 1956] (where only categories of modules are considered). Let
H(A, B) denote the construction of the homology functor in the manner of [Cartan
and Eilenberg 1956]; Buchsbaum says:

In [the] category [of all left Λ-modules MΛ], H(A,B) = HomΛ(A, B).
However, the dual category M∗

Λ admits no such concrete interpretation. This
explains the fact that the duality principle could not be efficiently used, as long
as we were restricted to categories concretely defined, in which the objects
were sets and the maps were maps of those sets [p.382].

In the last part of the quotation, the progress achieved by the introduction of
the concept of dual category is clearly exhibited: the dual categories used are
not categories of the “concretely defined” kind178. It is in this sense, thus, that
Buchsbaum’s theory transcends that of categories of modules (even though the
objects taken into account are still modules in his examples—but the arrows are
no longer module homomorphisms). In this, the theory differs in an important
manner from Grothendieck’s where the main concern is in categories of sheaves
(see the remaining sections of the present chapter).

Is Buchsbaum’s enterprise “important”? In 3.3.3.3, we will see that his duality
theory has only minor impact for the work with projective and injective resolu-
tions. Anyway: for Buchsbaum, duality was the central theme (and not sheaves).
His explicit skipping of applications in sheaf theory (see 3.3.3.2) makes sense in
view of the unity of his investigation; however, the corresponding judgement of
relevance looks erroneous from today’s point of view (probably dominated by the
views of the Grothendieck-community—a thesis which will be worked out in some
detail in section 3.4.2). From this point of view, Buchsbaum’s achievement looks
nearly trivial179; however, Buchsbaum’s work gives evidence for the importance of
the consideration of categories beyond the scheme “categories of structures” (see
5.3.1.5) for the conceptual clarification.

178The emphasis put on other types of categories is analyzed more fully in section 5.3.1.5.
179“The axioms are obviously ‘auto-dual’ “(les axiomes [ . . . ] sont de toute évidence « auto-

duals »”) [Godement 1958, 16] ; “tu pourrais t’appuyer sur Buchsbaum pour tout ce qui
concerne les choses triviales sur les [catégories abéliennes]” (letter of Serre to Grothendieck;
see 〈#15 p.123〉).
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3.2 Development of the sheaf concept until 1957

Alexander Grothendieck, in his famous paper [1957], used CT to make important
methodological progress in homological algebra, namely to transfer the procedures
developed in [Cartan and Eilenberg 1956] to sheaf theory.

In today’s language, a presheaf is a covariant functor F : Open(X)op → C;
here, X denotes a topological space, Open(X)op the partially ordered set of open
sets of X regarded as a category, and C a category which is not specified180. F is
called a sheaf if the F (U) fulfill certain conditions (“sheaf conditions”, see 3.3.3.1).
The content of these conditions is related to what Gray presented as the main task
of the sheaf concept: “in algebraic topology, [the local/global] dichotomy was not
so evident until Cartan clarified it and provided the major tool—cohomology with
coefficients in a sheaf—which ever since has mediated the passage from local to
global” [1979, 1]. In a similar manner, Godement in [1958, ii] described this task as
the prolongement [ . . . ] des sections181. Gray gives more detailed information on
this point (the technical concepts mentioned are not so important for the moment,
but most of them will be explained in what follows):

[Leray’s] use of fine couvertures [in [1949]] is one of the central ideas of
sheaf theory. There were subsequently many related notions; for instance, ho-
motopically fine in [SC 50/51], flasque [ . . . ] and mou [ . . . ] in [[Godement
1958]], and ultimately injective in [[Grothendieck 1957]]. All of them are con-
cerned with what was regarded as the main concern of sheaf theory—that of
extending partial sections to global sections. Their original use was the same
as their later use: to construct resolutions of the sheaves in which one is in-
terested by homologically trivial sheaves. Isomorphism theorems and duality
theorems usually were proved by showing that some known resolutions were
fine, flasque, or mou, etc. [1979, 6].

The task of particular classes of sheaves mentioned by Gray—“construct resolu-
tions of the sheaves in which one is interested by homologically trivial sheaves”—
indicates already that there is an analogy between the Cartan and Eilenberg ho-
mological algebra and sheaf cohomology. Grothendieck says this explicitly:

This work has its origin in the attempt to exploit the formal analogy#6
between the cohomology theory of a space with coefficients in a sheaf [ . . . ]
and the theory of derived functors of functors of modules182 [Grothendieck
1957, 119].

Buchsbaum picks up this formulation at the beginning of his review of Grothen-

180In the further development of the concept, also the domain category of the functor, the
category Open(X)op, is replaced by a category of a more general type (called a site), see 4.1.2.2.
181Sections are certain continuous mappings defined on subsets of the space, and the question

is whether they can be extended to larger subsets. For precise definitions, see 3.2.2.2.
182“Ce travail a son origine dans une tentative d’exploiter l’analogie formelle entre la théorie

de la cohomologie d’un espace à coefficients dans un faisceau [ . . . ] et la théorie des foncteurs
dérivés de foncteurs de modules”.
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dieck’s paper183: “The formal analogy between the cohomology theory of a space
with coefficients in a sheaf, and the derived functors of functors of modules has
been apparent for some time.” Thus, Buchsbaum stresses that the observation of
the analogy is not new as such (in section 3.3.3.2, we will see that Buchsbaum
himself originally had in mind this analogy to a certain degree when writing his
thesis).

If one wants to know the task that CT has accomplished for sheaf coho-
mology, one should—since it was the declared aim of Grothendieck’s to exploit
the mentioned formal analogy—investigate how this analogy was expressed and
interpreted in the work preceding Grothendieck’s and to what degree categorial
concepts are helpful in “exploiting” it. Analogies between the procedure of the
Séminaire Cartan and the Cartan and Eilenberg procedure are discussed in 3.2.2.3
and 3.3.3.3. A transfer of the latter procedure to sheaf theory is suggested by the
stress on the abelian variable of cohomology; see 3.4.1. The connection is estab-
lished by the observation that the question of whether sections can be extended is
very much the same as the question of what is the behaviour of a certain functor
on an exact sequence of sheaves.

The following accounts of the work done by Leray, Cartan and Serre have
mainly the task to enable us to undertake such an investigation and are not in-
tended to be independent (let alone exhaustive) historical studies of this work184;
in particular, I do not systematically enter a discussion of the respective proper
motivations of this work.

183Even without direct evidence, it is reasonable to suppose that the decision to commission
Buchsbaum with this review might have been promoted by Eilenberg. The latter had certainly
the possibility to influence such decisions, and actually to an even larger degree compared to the
analogous event concerning [Eilenberg and Mac Lane 1945] (see 2.3.2.1); moreover, Eilenberg
expressed criticisms concerning Grothendieck’s paper, partly for the sake of rendering justice to
Buchsbaum (see 3.3.1.3), so he certainly had an interest in giving Buchsbaum this opportunity
to react.
184There is already much literature (in particular [Gray 1979]) which I follow rather closely.
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3.2.1 Leray: (pre)sheaves as coefficient systems for algebraic
topology

3.2.1.1 Leray’s papers of 1946

Concerning Leray’s introduction185 of the concept faisceau, there is some litera-
ture186; consequently, I do not give here a presentation of my own. It is to be noted,
however, that Leray’s definition differs in some points from the one commonly used
today:

• instead of open sets, Leray uses closed sets;

• the sheaf conditions are lacking; thus, Leray defines presheaves, in modern
language. However, the specialization to faisceau normal seems to have a
content similar to that of the later sheaf concept187.

The aim of Leray in [1946a] is the study of the topology of a mapping
(représentation) between topological spaces188.

We are going to indicate summarily how the methods by which we have
studied the topology of a space [[1945]189 ] can be adapted to the study of the
topology of a mapping190 [1946a, 1366].

By this, Leray means that he wants to calculate the (co)homology of fibre spaces; in
fact, he mentions that in the same context, Steenrod in [1943, 610] had introduced
a notion similar to Leray’s faisceaux but much more specialized, or, as Leray puts
185The original French term for “sheaf” is “faisceau”. Some remarks on the different translations

of this term are contained in section 3.2.1.2. As it stands, the term has been employed in French
mathematics from the end of the 19th century with different significations (not directly related
to the usage introduced by Leray). [McLarty 2006a, 214] gives an example from the work of
Poincaré on Lie groups (actually illustrating McLarty’s view of Poincaré’s policy about the
usage of the term “group”; see 2.1.1); Camille Jordan used the term in his paper [1877, 97],
apparently without giving a definition. However, [Müller 1947] contains a modern version of
Jordan’s concept of “faisceau”; the Zentralblatt review of [Müller 1947], Zbl.034.16302, indicates
clearly that the concept of Jordan–Müller is not related to the Leray concept.
186[Houzel 1990;1998], [Kantor 2000] (in particular [Miller 2000]), [McLarty 2006b], [Dieudonné

1989, 123ff].
187This is suggested, for instance, by [Gray 1979, 6] who writes in his presentation of [Leray

1949] “[a sheaf] is called continuous (instead of the earlier term normal) if B(F ) = limB(V ),
the limit denoting the direct limit over all closed neighbourhoods V of F ”. This construction
corresponds to the situation of the so-called sheafification of a presheaf (see 3.3.3.1); whether the
term continuous sheaf really has the same signification as the term normal sheaf remains to be
checked (Leray in the 1946 papers does not speak about limits).
188Thus, Leray’s aim is similar to that of Hopf (2.1.2); while he is concerned with other types of

mappings (fibrations), the strategies are not entirely unrelated. Anyway, Leray’s activities belong
to the field of algebraic topology and not to homological algebra; I discuss them nevertheless in
the present chapter since retrospectively they became part of the prehistory of Grothendieck’s
homological algebra.
189For a description of the content of this paper, see [Dieudonné 1989, 115ff].
190“Nous nous proposons d’indiquer sommairement comment les méthodes par lesquelles nous

avons étudié la topologie d’un espace [[1945]] peuvent être adaptées à l’étude de la topologie
d’une représentation”.



3.2. Development of the sheaf concept until 1957 107

it, “un cas très particulier de cette notion”191. The role of local coefficients in
general and of Leray’s faisceaux in particular in the context of cohomology of fibre
spaces is described by Houzel:

The study of the relations between the homology of a fibre space and those
of its base and its fibre necessitated the introduction of new tools: cohomology
with local coefficients varying from one point to another; calculation of the
cohomology by a sequence of approximations. More generally, these tools
should serve, in the case of a continuous function ξ : X → Y , to study the
cohomology of X by those of Y and of the fibres of ξ192 [Houzel 1990, 9].

Leray introduced the notion of sheaf in order to connect the cohomologies
of the fibres: instead of considering only the fibres π−1(x∗) (x∗ ∈ E∗) and
their cohomology, he considers the closed sets F ∗ of E∗, their inverse images
π−1(F ∗) and the cohomology of these images193 [Houzel 1998, 37].

The applications of Leray’s concepts to fibre spaces are contained in [1946b;1946c];
In [1946c, 395f], for instance, Leray extends the Poincaré duality theorem to the
projection π of a fibre space E with base E∗. Besides this, he gives in [1946d]
applications on homogeneous spaces. To stress it once again: Leray develops his
concepts for applications in algebraic topology.

3.2.1.2 On the reception of these works outside France

This reception has not yet been studied historically. In the present context, Eilen-
berg’s reviews of Leray’s work are of particular interest. Here is his review of [Leray
1946a; 1946b] in extenso:

A “bundle” of groups in a topological space X is a function which with
every closed subset F of X associates a group BF and with every inclusion
F ′ ⊂ F a homomorphism BF → BF ′ subject to the usual transitivity condi-
tion. Moreover, BF should be the trivial group if F is vacuous. A bundle of
groups can be used as a coefficient system for homology and cohomology in
the space X. Let f : X → Y be a continuous map and let p, q be integers. For
each closed set F ⊂ Y , BF is defined as the pth cohomology group of f−1(F )
with coefficients in a ring A. This gives a bundle of groups in Y with respect

191Indeed, Steenrod, in his discussion of cohomology of fibre spaces, considers only systems of
coefficient groups where the groups are interrelated by isomorphisms (compare also [Eilenberg
and Zilber 1950, 501], [Dieudonné 1989, 121ff] and [Houzel 1990, 11]). Moreover he attributes
the groups to points (and only to points) while Leray stresses the idea to attribute an algebraic
object to each closed set; see [Gray 1979, 5] and [Houzel 1998, 37] (the latter cited below).
192“L’étude des relations entre l’homologie d’un espace fibré et celles de sa base et de sa fibre

rendait nécessaire l’introduction de nouveaux outils : cohomologie à coefficients locaux, variant
d’un point à l’autre ; calcul de la cohomologie par une suite d’approximations. Plus généralement,
ces outils dévraient servir, dans le cas d’une application continue ξ : X → Y , a étudier la
cohomologie de X à partir de celles de Y et des fibres de ξ”.
193“Leray introduit la notion de faisceau pour relier entre elles les cohomologies des fibres : au

lieu de considérer seulement les fibres π−1(x∗) (x∗ ∈ E∗) et leur cohomologie, il considère les
fermés F ∗ de E∗, leurs images reciproques π−1(F ∗) et la cohomologie de ces images réciproques”.
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to which the qth cohomology group is constructed. The resulting group is
called the (p, q)-module of f over A.

The second paper enters in more detail into the structure of this new
group and states without proofs a number of applications.

There can be made several observations:

• By its shortness, the review leaves the reader with the feeling that the re-
viewer found Leray’s papers not very interesting. In particular, the intersec-
tion with the paper [Steenrod 1943], mentioned by Leray, is not commented
by Eilenberg, even though he was perfectly aware of this paper (he reviewed
it as well). Moreover, Eilenberg is remarkably quick concerning the appli-
cations made by Leray of his new concept, which renders the review rather
obsolete since the first thing a potential reader will ask is probably what can
be done with the concept.

• Eilenberg’s presentation, in certain respects, differs from Leray’s:

– Leray does not speak about bundles of groups, but of modules or rings
(which is clear since Leray is interested in cohomology);

– Leray does not intend to use a bundle of groups as a coefficient system
for homology (but solely for cohomology);

– Leray does not consider continuous maps in general, but only closed
continuous maps.

• Eilenberg does not reproduce Leray’s symbolism faithfully, but substitutes a
symbolism of his own:

Leray E F f BF π E∗ p q a
Eilenberg X F F ′ BF f Y p q A

Probably Eilenberg used �X� in place of the French E for espace in
view of the Anglo-Saxon tradition; on the other hand, he did not change �F�
for fermé and �A� for anneau. His substitution of �f� by �F ′� facilitates
reading, since the typical reader will think rather of a function when reading
�f�. One might also suggest that Eilenberg was interested in a unification
of notation not yet completely achieved in algebraic topology at the time
(compare the unanimous use of �p, q� for integers, on the contrary). By the
way, Leray does not use an arrow.

• Eilenberg translates faisceau with “bundle”. Thus, the translation “sheaf”,
while now commonly accepted, was not the first choice then. Might Eilenberg
have thought of an analogy to the concept of fibre bundle?

• Eilenberg does not mention that Leray’s faisceaux are in principle nothing but
functors, in his own terminology (when he speaks about the “usual transitivity
condition”, he might think of a parallel to the case of the maps and atlases
already common for a long time in the theory of manifolds then). Was he
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too modest to point in such a way to his own work? This would have been a
good occasion to make known the language of categories and functors to the
French community, after all. I come back on this question in 3.4.2.

Similarly, the German community (of complex geometry and function theory of
several variables) became aware of the sheaf concept only after some delay. Still in
1954 at the Amsterdam ICM, Hirzebruch gave a lecture with the title “Der Satz von
Riemann–Roch in faisceau-theoretischer Formulierung”. This indicates that there
was then not yet any common German translation of the term faisceau; see also
Hirzebruch’s note concerning this question in [1956, 1]. Incidentally, Hirzebruch’s
work in this context is of great importance for later work by Grothendieck (see
3.3.3.5).

3.2.2 The “Séminaire Cartan”

From the année universitaire 1948/49 on, Henri Cartan ran a Séminaire de topolo-
gie algébrique in Paris. In its first year, this seminar (hereafter abbreviated by SC
for bibliographical reference) had a mainly receptive character: some basic con-
cepts of homology theory—simplicial, singular and Čech (co)homology theory—
were compiled. In all cases, there is an accent put on induced homomorphisms.
In the present context, chiefly exposé 10 is of interest, since local coefficients are
treated there. The fundamental groupoid194 is put in relation to the groupoid of
the isomorphisms between the various local coefficient groups—and this, as was
to be expected, in a functorial manner (though without any explicit use of catego-
rial language). After the discussion of local coefficients for singular and simplicial
(co)homology, a modification of the concept of local coefficient systems is devel-
oped on p.10–08, aiming at an application in Čech theory. Here, a special case of
the concept of presheaf is anticipated: expressed in nowadays’ language, what is
given here is the definition of a presheaf for open coverings where all restriction
morphisms are isomorphisms (i.e., it is a functor to a groupoid).

In the 1950/1951 session, contributions of a more original kind were made (in-
cidentally belonging rather to homological algebra than algebraic topology). Here,
the axiomatic method in homology theory developed by Eilenberg and Steenrod
(see 2.4) plays a role195. In the first two exposés of SC 50/51, for example, Eilen-
berg gives axioms for cohomology of groups, and proves the existence of such a
cohomology theory by considering, for the group Π, chain complexes C of Z(Π)-
modules to which the functor HomΠ(C, A) is applied, where A is another such
module. In exposés 5 to 7, Serre speaks about applications of cohomology of

194This concept implicitly is present in [Steenrod 1943]. On the history of the groupoid concept,
see section 5.1.6 of the original German version of my thesis.
195Recall that while the Eilenberg–Steenrod book appeared only in 1952, the method is actually

older (compare [Eilenberg and Steenrod 1945]); it was presented to the Séminaire Cartan by
Eilenberg who participated in the 1950/1951 session. [Gray 1979, 7] suggests that an analysis of
the paper [Cartan 1949] would be helpful to give a more complete account of Cartan’s reception
of the Eilenberg and Steenrod approach; this will not be tried here.
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groups to the theory of simple algebras196. Afterwards, Cartan speaks about
spectral sequences and sheaf cohomology (see also 3.2.2.3).

3.2.2.1 Sheaf theory in two attempts

Cartan devoted already a part of SC 48/49 to sheaf theory. In the 2e édition
multigraphiée, revue et corrigée (1955), one reads at the foot of the Table de
matières:

Exposés 12 to 17 (sheaf theory) have not been reedited. For this subject
matter, see the Henri Cartan seminar, 3rd year, 1950/51, where the theory
of sheaves has been revised197.

Exposé 14 of SC 50/51 begins thus:

The aim of this exposé and of the following is to revise entirely the theory
[ . . . ] presented in exposés 12 to 17 of the 1948/49 seminar. In the meantime,
[[Leray 1950]] appeared. [ . . . ]

Note that the terminology is somewhat different from the one adopted in
the 1948/49 seminar. In particular, the meaning of the word “sheaf” has been
modified198.

This seems to indicate that the paper [Leray 1950] rendered obsolete the the-
ory developed in the exposés of 1948/49 mentioned. However, the modification
of the sheaf definition (which will be analyzed in the sequel) is not taken from
Leray’s paper—see [Leray 1950, 43]; moreover, Cartan says explicitly that the
new definition is due to Lazard199. Thus, the investigation of Leray’s paper is not
central here (since we are principally interested in the role of CT in the several
transformations of the sheaf definition)200.

196There is without doubt a connection with his work in that direction: [Serre 1950a], [1950b]
(which is an outline of Serre’s dissertation [1951]), [Serre and Hochschild 1953], [Serre 1953b].
197“Les exposés 12 à 17 (Théorie des faisceaux) n’ont pas été réédités. Voir à ce sujet le Sé-

minaire Henri CARTAN, 3e année, 1950/51, où la théorie des faisceaux a fait l’objet d’une
nouvelle rédaction mise à jour en 1951” .
198“Le but de cet exposé et des suivants est de reprendre entièrement la théorie [ . . . ] qui a

fait l’objet des exposés 12 à 17 du Séminaire 1948/49. Entre temps est paru [[Leray 1950] ].
[ . . . ]

N.B.—La terminologie s’écartera quelque peu de celle adoptée dans le Séminaire 1948/49. En
particulier, le sens du mot “faisceau” a été modifié” .
199Presumably Michel Lazard who participated to the Séminaire Cartan in the early 1950s.

Actually, it would be interesting here to know the definition employed in the “exposés 12 à 17
du Séminaire 1948/49” . Unfortunately, specimens of the first edition apparently have not been
conserved; “Le séminaire de 1948-49 contenait une prémière version de la théorie des faisceaux
(exposés 12 à 17) qui a été rétirée de la circulation” [Houzel 1990, 12].
200See also n.211. At the same time, we still do not know precisely in which way the paper

[Leray 1950] motivated the renewal of the presentation of sheaf theory in the Cartan seminar.
In his paper, Leray investigates in detail certain spectral sequences (anneaux spectraux, ibid.
p.19), in particular as far as sheaves are concerned (p.78ff); he specialises these sequences to the
case f : X → Y (p.91), among others. It will become clearer in section 3.3.3.5 what is meant
by a spectral sequence of a mapping; in turn, the concept of spectral sequence will never be
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3.2.2.2 The new sheaf definition: “espaces étalés”

The following definition is due, in its “topological” form, to Lazard:
Definition: Let K be a commutative ring with unit element [ . . . ]. A

sheaf of K-modules on a (regular) topological space X is a set F equipped
with a function p (called “projection”) from F onto X and the two following
structures:

1) For each point x ∈ X , the inverse image p−1(x) = Fx is endowed with
a K-module structure;

2) F is endowed with a topological structure (generally not separated)[201]
satisfying the two following conditions: (α) the laws of composition of F
(not everywhere defined) defined by the K-module structures of the Fx are
continuous; (β) the projection p is a local homeomorphism (i.e., each element
of F has an open neighbourhood which p maps biuniquely and bicontinuously
on an open set of X )202 [p.14–01].

Cartan considers next the set Γ(F, X) of “sections” of F over an open subset X ⊂ X
(i.e., the set of continuous mappings s : X → F with p(s(x)) = x ∀x ∈ X). On
this set, one has an obvious module structure, and each inclusion of an open set
X in another open set Y induces a module homomorphism Γ(F, Y ) → Γ(F, X).
This construction leads Cartan to distinguish several ways in which a faisceau can
be given.

2. – Modes of definition of sheaves. Examples.
[ . . . ] For each point x ∈ X , the module Fx is obviously identical to the

inductive limit (“direct limit”) of the modules Γ(F, X) relative to the open sets
X containing x, equipped with homomorphisms Γ(F, Y ) → Γ(F, X) defined
above. To see this, one considers the obvious homomorphism Γ(F, X) → Fx

(defined for x ∈ X) which is such that if x ∈ X ⊂ Y , the homomorphism

accurately defined in the present book since this would necessitate some notation without being
very central for the purposes of the book. The reader who wishes to see such a definition can
consult [Dieudonné 1989, 132ff], for instance. In homological algebra, spectral sequences are used
in particular for the derivation of composite functors; see [Cartan and Eilenberg 1956, 315ff]. In
the later theory of derived categories (see 4.2.2), the concept of derived functor is redefined, and
spectral sequences are replaced by more general procedures.
201This remark is quite important. Separated spaces in the sense of the Séminaire Cartan

are Hausdorff spaces with the additional property that every open cover has a locally finite
refinement. In Serre’s and Grothendieck’s applications of sheaves discussed below, the spaces
considered are not Hausdorff.
202“La définition qui suit est due, sous la forme “topologique” qui lui est donnée, à Lazard :
Définition : soit K un anneau commutatif à élément-unité [ . . . ]. Un faisceau de K-modules

sur un espace topologique (régulier) X est un ensemble F , muni d’une application p (dite “pro-
jection”) de F sur X et des 2 structures suivantes :

1) pour chaque point x ∈ X , l’image réciproque p−1(x) = Fx est munie d’une structure de
K-module ;

2) F est muni d’une structure topologique (en général non séparée) satisfaisant aux deux
conditions (α) les lois de composition de F (non partout définies) définies par la structure de
K-module des Fx sont continues ; (β) la projection p est un homéomorphisme local (i.e. : tout
élément de F possède un voisinage ouvert que p applique biunivoquement et bicontinûment sur
un ouvert de X )”.
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Γ(F, Y ) → Fx is the composition of Γ(F, Y ) → Γ(F, X) and Γ(F, X) → Fx
203

[p.14–02].

For later reference, note that Cartan here characterizes the limit by its universal
property (that means: categorially). Here is the second way to define a faisceau:

Conversely: Suppose that to each open set X of a fundamental system of
open sets of the space X one has attached a module FX , and to each couple
(X, Y ) of open sets such that Y ⊂ X, and that FY and FX are defined, a
homomorphism fXY from FY to FX , and this in a manner that if X ⊂ Y ⊂ Z,
the homomorphism fXZ is the composition fXY fY Z . These data define a
sheaf F , as follows [ . . . ]204 [p.14–02].

In today’s language (not used by Cartan), the FX constitute a functor from the
base of the topology, considered as a category, to the category of modules; such
functors will be called préfaisceaux (presheaves) by Grothendieck (3.3.3.1). As
to the announced construction of the faisceau F corresponding to the modules
FX , Cartan notes first that the open neighbourhoods X of a point x, ordered by
refinement, form a directed set Φ(x); thus, one can define205

Fx := lim−→X∈Φ(x)
FX ;

then, F is the disjoint union of the Fx, and p is given simply by p(y) = x ∀y ∈ Fx;
the definition of the topology on F will be skipped here (see for example SC
50/51 p.14–03 or [Grothendieck 1957, 154]; [Godement 1958, 111] has a somewhat
different definition). Cartan continues:

Whenever a sheaf F is defined by the FX as above, one has an obvious
homomorphism FX → Γ(F, X), namely the one which to each element v of
FX assigns the set of its images in the inductive limits Fx relative to the
points x ∈ X206 [p.14–03].

Cartan now simply states “in general, this homomorphism is not an isomorphism
(en général, cet homomorphisme n’est pas un isomorphisme)” [p.14–03] (see also
203“2. – Modes de définition de faisceaux. Exemples.
[ . . . ] Pour chaque point x ∈ X , le module Fx s’identifie évidemment à la limite inductive

(“direct limit”) des modules Γ(F, X) relatifs aux ouverts X contenant x, munis des homomor-
phismes Γ(F, Y ) → Γ(F, X) définis ci-dessus. Pour le voir, on considère l’homomorphisme
évident Γ(F, X) → Fx (défini pour x ∈ X), qui est tel que si x ∈ X ⊂ Y , l’homomorphisme
Γ(F, Y ) → Fx est composé de Γ(F, Y ) → Γ(F, X) et de Γ(F, X) → Fx”.
204“Réciproquement : supposons que l’on ait attaché, à chaque ouvert X d’un système fonda-

mental d’ouverts de l’espace X , un module FX , et, à chaque couple (X, Y ) d’ouverts tels que
Y ⊂ X et que FY et FX soient définis, un homomorphisme fXY de FY dans FX , et cela de
manière que, si X ⊂ Y ⊂ Z, l’homomorphisme fXZ soit le composé fXY fY Z . Ces données
définissent un faisceau F , comme suit [ . . . ]”.
205Provided the target category of F has the corresponding limits, which is actually the case

in the category of K-modules under consideration here.
206“Lorsqu’un faisceau F est défini par le moyen de modules FX comme ci-dessus, on a un ho-

momorphisme évident : FX → Γ(F, X) ; c’est celui qui, à un élément v de FX , associe l’ensemble
de ses images dans les limites inductives Fx relatives aux points x ∈ X”.
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[Houzel 1990, 12], [Houzel 1998, 43]). The “sheaf conditions” to be considered in
3.3.3.1 in the further analysis have proved to be precisely the additional conditions
needed to guarantee that the homomorphism under consideration is in fact an
isomorphism (see for example [Godement 1958, 109ff]). What cannot yet be clearly
seen from Cartan’s viewpoint (but will be expressed in the construction of that
isomorphism) is that the sets of sections of p on the various X constitute themselves
a sheaf (in the sense which Grothendieck will give to that term: a presheaf fulfilling
the sheaf conditions)207. Further clarification of the concept will show that each
sheaf is given as the sheaf of local sections of an espace étalé208; in many examples,
the sets of local sections bear a (for example algebraic) structure (since the sections
are functions).

The perspective of CT is already present here in two respects. On the one
hand, the property of the limit concept crucial in Cartan’s construction of the
espace étalé is the universal property (see above). On the other hand, Cartan
notes immediately that there is a concept of homomorphism for sheaves in Lazard’s
sense:

Homomorphism of sheaves: consider two sheaves F and G on the same
space X (a more general case will be studied below). A homomorphism from
F to G is a continuous function φ from F to G such that for each point
x the restriction φx of φ to Fx is a homomorphism from Fx to Gx. The
set of homomorphisms from F to G is obviously endowed with a K-module
structure209 [p.14–04].

This concept of homomorphism coincides with the one expected from the point
of view of CT—the category of espaces étalés over X is an example of a so-called
slice category where morphisms φ are those arrows making

F

p
���

��
��

��
φ �� G

p′
����

��
��

�

X

commutative (for the concept of slice category, see also 4.1.1.2).

207A proof can be found, for example, in [Godement 1958, 109f].
208If one leaves aside the algebraic structure on the fibres Fx in Lazard’s sheaf definition, one

obtains the definition of the concept faisceau d’ensembles, called espace étalé by Godement.
Thus, an espace étalé is a topological space E, endowed with a mapping p : E → X fulfilling the
condition (β) (with E in place of F ). I use this terminology when referring to Lazard’s sheaf
concept. Incidentally, the sheaf of sections can also be defined for a so-called space over X,
differing from an espace étalé in that p is only assumed to be continuous ([Godement 1958, 109]
calls such a space over X an espace découpé de base X).
209“homomorphisme de faisceaux : considérons deux faisceaux F et G sur le même espace
X (un cas plus général sera envisagé plus loin). Un homomorphisme de F dans G est une
application continue φ de F dans G, telle que, pour tout point x, la réstriction φx de φ à Fx

soit un homomorphisme de Fx dans Gx. L’ensemble des homomorphismes de F dans G est
évidemment muni d’une structure de K-module”.
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The remark “a more general case will be studied below” should be commented
on. Indeed, on p.14–6, Cartan presents the concept of “homomorphism compati-
ble with a continuous function (homomorphisme compatible avec une application
continue)”:

Let X and Y be two spaces, and f a continuous function from X to
Y. Given a sheaf F on X and a sheaf G on Y, let us define the notion of
homomorphism from G to F , compatible with the function f . This is, by
definition, a collection of homomorphisms φx : Gf(x) → Fx, satisfying the
following notion of continuity: if one has a section x → s(x) ∈ Fx over a
neighbourhood of a point x0 ∈ X , and a section x → t(y) ∈ Gy over a
neighbourhood of y0 = f(x0), and if φx0(t(f(x0))) = s(x0), then one has
φx(t(f(x))) = s(x) for every point x sufficiently close to x0

210.

This notion reduces to the notion of sheaf homomorphism already defined when
X = Y and f = Id. In general, such a compatible homomorphism yields a ho-
momorphism of modules of sections Γ(G, Y ) → Γ(F, f−1(Y )) (Y open in Y);
moreover, if we have two sheaves F, F ′ on X and two sheaves G, G′ on Y, the
homomorphisms G → F and G′ → F ′ compatible with f are called compatible
with the homomorphisms F → F ′, G → G′ if for every x the diagram

Fx ←−−−− Gf(x)⏐⏐�
⏐⏐�

F ′
x ←−−−− G′

f(x)

is commutative. In this case, you have a corresponding commutative diagram
between modules of sections. This suggests that this concept of compatible homo-
morphism yields a category of sheaves defined over a category of topological spaces;
for this, one would have to check whether there is a composition of compatible ho-
momorphisms having the necessary properties. As a mathematical question, this
question is beyond the scope of this book; the corresponding historical question
would read: did any of the protagonists of our history look for such a category?
Would there have been a purpose in doing so? Again, highly specialized questions
of this kind are beyond the scope of the book.

The question remains to be answered why two different modes de définition
de faisceaux are necessary. The definition using the FX is closer to the foregoing
definition by Leray than Lazard’s definition; thus, the latter seems to be introduced
for a purpose to which Leray’s definition was not optimally adapted211. The
210“Soient deux espaces X et Y, et f une application continue de X dans Y. Etant donné un

faisceau F sur X , et un faisceau G sur Y, on va définir la notion d’homomorphisme de G dans
F , compatible avec l’application f . C’est, par définition, une collection d’homomorphismes φx :
Gf(x) → Fx, satisfaisant à la notion de continuité suivante : si on a une section x → s(x) ∈ Fx

au-dessus d’un voisinage d’un point x0 ∈ X , et une section x → t(y) ∈ Gy au-dessus d’un
voisinage de y0 = f(x0), et si φx0(t(f(x0))) = s(x0), alors on a φx(t(f(x))) = s(x) en tout
point x assez voisin de x0”.
211It is thus not probable that this was the modification suggested by [Leray 1950].
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qualification of Lazard’s definition as “topologique” is to be understood thus: The
modules of coefficients in isolation are not given first, but the sheaf as a whole (in
particular, as a topological space) where the fibres are, so to say, only subsequently
endowed with their module structure. This is apparently what is regarded as
advantageous in SC 50/51 about Lazard’s definition.

Christian Houzel advanced the following interpretation of the situation: “The
definition of sheaves as spaces had to appear preferable since it could be made in
terms of structured sets rather than in terms of a functor on the category of open
sets (La définition des faisceaux comme espaces étalés devait sembler préférable
car elle se faisait en termes de structure sur un ensemble plutôt qu’en termes de
foncteur sur la catégorie des ouverts)” [Houzel 1998, 42f]. Can this interpretation
stand? Is this to be understood that by then, the “set with structure” paradigm
was so strong (at least in France) that there has been a tendency to submit to
it any definition whatsoever? At least, it seems that Cartan used first Leray’s
(implicitly categorial) definition of 1946 and drew only afterwards the conclusion
that Lazard’s definition is preferable. However, there is no more evidence for
Houzel’s claim contained in the published version of the Séminaire Cartan than
the one already quoted in the foregoing paragraphs. For example, there is no
preface to SC 50-51 and consequently no global justification for the withdrawal of
the mentioned exposés. As explained above, I do not believe that the wish to pass
to a less categorial definition was the reason for the withdrawal since this passage
is just not the contribution of [Leray 1950].

3.2.2.3 Sheaf cohomology in the Cartan seminar

In SC 50/51, the local section functor Γ(F, X) (F a sheaf, X an open set) is
called explicitly a functor of F ; also, the concepts kernel and image of a sheaf
homomorphism and exact sequence of sheaves are introduced. These concepts are
defined for sheaves in the sense of Lazard as follows: a sheaf homomorphism φ is
composed of mappings φx defined on the various Fx; the kernel of φ is then built
up from the kernels of the φx etc. Expressed in later language: Ker(φ) represents
the functor Ker(Hom(·, φ)); [Kashiwara and Schapira 1990, 27, 86]. Cartan notes
(although not in these terms) that Γ is left exact, but not exact (p.14–05). ΓΦ

is defined as the functor whose values are global sections s with supp(s) ∈ Φ212

(p.15–03) where Φ is a family (fulfilling certain closure properties) of subsets of the
topological space submitted to certain conditions of a topological kind. It is noted
that ΓΦ also is left exact; further, the following theorem is proved: if f : F → G
is a surjective sheaf homomorphism with fine kernel213, and if the elements of Φ
are paracompact, then the homomorphism induced by ΓΦ is surjective (thus, at

212Let F be a faisceau in the sense of Lazard; it makes sense then, due to the algebraic structure
defined on the fibres, to introduce the support of a section: supp(s) = {x ∈ X| s(x) �= 0}. (p.15–
04).
213I do not discuss here more closely this concept; the important thing to know about fine

sheaves is that they have trivial cohomology.
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least on the sequence 0 → Ker f → F → G → 0, ΓΦ is exact; p.15–04).
In exposé 16, Cartan enters the discussion of an axiomatic cohomology theory

(théorie axiomatique de la cohomologie):

We will have to deal here with “Čech” cohomology; more precisely, in the
case of a compact space, the family Φ being the family of all closed subspaces,
we will find cohomology as it was defined by Čech, at least if the coefficients
form a constant sheaf. In the general case, the cohomology we will define
depends on the family Φ; it depends also on the chosen coefficients: these
constitute, in general, a sheaf F (without graduation or coboundary) on the
space X considered. What we have, hence, are “local coefficients”, not in the
(more particular) sense [ . . . ] of Steenrod, but as Leray introduced them in
[[1946a, 1946b, 1946c, 1946d, 1950]]214 [p.16–01].

Cartan’s introduction of sheaf cohomology proceeds in analogy to Eilenberg’s pre-
sentation of group cohomology: the axiomatic definition first, followed by an ex-
istence proof. More explanations can be found in [Houzel 1998, 43f] and [Houzel
1990, 13]; essentially, the existence proof is done using a graded sheaf C obtained
through a fine resolution of the base ring (“faisceau fondamental”). There is an
analogy to the procedure of [Cartan and Eilenberg 1956] in that on the one hand,
C itself might be considered as an acyclic complex, while on the other hand, a
complex with potentially nontrivial cohomology is obtained when ΓΦ is applied
to the tensor product of C and a given sheaf F . This becomes the definition of
the cohomology of F : Hq

Φ(X , F ) := Hq(ΓΦ(C © F )) (16-07; here, �©� denotes
the tensor product). It is natural, thus, to think of a kind of derivation of ΓΦ

here. One has to understand that it is just the section functor which is to be
derived; this is clear from the motivation of sheaf theory to study extensions of a
section (prolongements d’une section) (see also 3.4.1); one can use sheaf cohomol-
ogy (i.e., a measure for the nonexactness of the section functor) for the transition
from local to global: the transition is made by the resolution of a given sheaf in
(co)homologically trivial sheaves—i.e., sheaves with sections that can be extended.

In the definition of the coboundary operators for this cohomology theory the
particular conditions mentioned above (that the kernel of f is fine and that the el-
ements of Φ are paracompact) play a role (p.16-07). Now, the proposition that any
sheaf can be embedded in a fine sheaf depends on the paracompactness (in partic-
ular the Hausdorff property) of the space X . Consequently, Cartan’s cohomology
theory cannot be applied to sheaves over arbitrary topological spaces215.
214“Il s’agira ici de la cohomologie “de Čech” ; plus exactement, dans le cas d’un espace compact,

la famille Φ étant la famille de tous les sous-espaces fermés, on retrouvera la cohomologie telle
qu’elle a été définie par Čech, au moins lorsque les coefficients forment un faisceau constant.
Dans le cas général, la cohomologie qu’on va définir dépend de la famille Φ ; elle dépend aussi
des coefficients choisis : ceux-ci constituent, en général, un faisceau F (sans graduation ni
cobord) sur l’espace considéré X . Il s’agit donc de “coefficients locaux”, non pas dans le sens
(plus particulier) [ . . . ] de Steenrod, mais tels que Leray les a introduits dans [[1946a, 1946b,
1946c, 1946d, 1950]]” .
215It is to be noted that [Gray 1979, 8] says: “existence [of cohomology is] shown by means of

fine resolutions although injectives are mentioned” ; actually, in exposé 17, the concept Φ-injectif
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On p.17–10, the already announced comparison between Čech theory and
Cartan’s axiomatic theory is sketched: the former fulfils the axioms, hence the
equality of the two theories is guaranteed by the uniqueness theorem proved before.
Incidentally, the usefulness of Čech theory seems not to be that it is better adapted
to the task of calculation since the proof of the existence of fine resolutions is
constructive.

3.2.3 Serre and “Faisceaux algébriques cohérents”

3.2.3.1 Sheaf cohomology in Algebraic Geometry?

In the 1940s and 1950s, algebraic geometry was marked by a change of methods and
objects: besides transcendental methods (coming from complex geometry and used
in the study of complex varieties), algebraic methods became more important since
they can be applied to more general objects (André Weil: varieties over arbitrary
fields). Serre in his 1955 paper Faisceaux algébriques cohérents (often cited as
FAC in the literature) wanted to apply to such arbitrary algebraic varieties the
theory of sheaves216 relative to the so-called Zariski topology217, and cohomology
groups with coefficients in these sheaves. According to [Grothendieck 1960a, 103],
Serre was the first to try this; similarly, [Mumford 1971, 88] writes: “[[Serre 1955]]
introduced the cohomology of sheaves into algebraic geometry for the first time”.
Further, Serre presented in his paper the first practical uses of the Zariski topology.

Serre notes first to what extent the fact that the Zariski topology is not
Hausdorff makes it difficult to transfer the then usual methods to his situation:

In the applications [ . . . ], X is an algebraic variety, endowed with the
Zariski topology, hence it is not a separated topological space, and the meth-
ods used by [[Leray 1950]] or [SC 51/52] (based on “partitions of unity” or
“fine” sheaves) cannot be applied here; hence, we have been obliged to proceed
in the manner of Čech [ . . . ]. Another difficulty, related to the fact that X is
not separated, occurs with the “exact cohomology sequence” [ . . . ]; we have
been able to establish this exact sequence only in particular cases, which are
by the way sufficient for the applications which we envisaged218 [1955, 197].

is introduced. The relation between this concept and that of injective module from [Cartan and
Eilenberg 1956] is not quite clear.
216The sheaf definition in [Serre 1955] is equivalent to Lazard’s; 3.2.2.2. Serre puts a clear

algebraic accent (the chronology is not to endow the fibres of a topological space with an al-
gebraic structure, but to endow the sets carrying an algebraic structure with a topology); but
nevertheless, a sheaf “is” in principle a topological space.
217Sets mapped to zero by polynomials are closed; more information about this topology can

be found in 4.1.2.1.
218“Dans les applications [ . . . ], X est une variété algébrique, munie de la topologie de Zariski,

donc n’est pas un espace topologique séparé, et les méthodes utilisées par [[Leray 1950]], ou [SC
51/52] (basées sur “partitions de l’unité”, ou les faisceaux “fins”) ne lui sont pas applicables ;
aussi avons-nous dû revenir au procédé de Čech [ . . . ]. Une autre difficulté, liée à la non-
séparation de X, se rencontre dans la “suite exacte de cohomologie” [ . . . ] ; nous n’avons pu
établir cette suite exacte que dans des cas particuliers, d’ailleurs suffisants pour les applications
que nous avions en vue”.
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The two last mentioned problems (the necessity to apply Čech theory and the
problem of the exact cohomology sequence) will be discussed in the next two
sections, while the problem that certain methods of [Leray 1950] and SC 51/52
are not applicable will be discussed in 3.3.3.5 (together with its solution found by
Grothendieck).

3.2.3.2 Čech cohomology as a substitute for fine sheaves

Serre calculates sheaf cohomology by the Čech procedure. Let U be a covering
and F a sheaf; [Serre 1955, 212] defines then for p ≥ 0 the concept of p-cochaîne
de U à valeurs dans F : a function f sending each p + 1-tuple s = (i0, . . . , ip) of
elements of an index set to a section fs of F over Us = Ui0 ∩ · · · ∩ Uip . These f
form a group Cp(U,F) =

∏
Γ(Us,F). From these groups, Serre forms the complex

C(U,F) which yields Hq(U,F); the cohomology of the space finally is obtained
by a passage to the limit (p.215). In the case of the Zariski topology (which is
compact), one can do with finite coverings—but not without limit; the system of
finite coverings is simply cofinal to the system of all coverings (i.e., yields the same
limit).

3.2.3.3 The cohomology sequence for coherent sheaves

For an exact sequence of sheaves 0 → A → B → C → 0, the sequence 0 →
C(U,A) → C(U,B) → C(U, C) is exact according to [Serre 1955, 216], but the
right homomorphism is not surjective (this follows from Cartan’s corresponding
result for Γ, see 3.2.2.3). In order to obtain an exact cohomology sequence, one
has to replace C(U, C) by the image of this homomorphism; consequently, the cor-
responding entry in the cohomology sequence is not Hq(U, C) but the cohomology
group of this image, written Hq

0 (U, C) by Serre. For paracompact spaces, these
two groups are isomorphic (p.218), but the Zariski topology is not Hausdorff and
hence not paracompact; here is Serre’s comment: “I don’t know whether such a
proposition is possible for non-separated spaces (j’ignore si une telle [proposition]
est possible pour des espaces non séparés)”219 (p.217).

Serre indicates an ad-hoc-solution of the problem [1955, 218]: “The exact
cohomology sequence is valid whenever one can show that Hq

0 (U, C) → Hq(U, C)
is bijective (we will see in paragraph 47 that this is the case if X is an algebraic
variety and A is a coherent algebraic sheaf (La suite exacte de cohomologie [ . . . ]
vaut [ . . . ] chaque fois que l’on peut démontrer que Hq

0 (U, C) → Hq(U, C) est
bijectif (nous verrons au n°47 que c’est le cas lorsque X est une variété algébrique
et que A est un faisceau algébrique cohérent)”. Thus, the key idea of Serre was
to restrict his attention to so-called coherent sheaves. The property of a sheaf of
being coherent (ibid. p.208) is related to a finiteness property: the sheaf is locally

219In the case of derived functors, instead, one has always an exact cohomology sequence.
[Grothendieck 1957, 177f] gives even a counterexample to Serre’s proposition when the space is
not paracompact.



3.3. The Tôhoku paper 119

generated by finitely many of its sections (and the same is the case for certain
sheaves derived from it). For the history of coherence, see [Gray 1979, 16] and
[Houzel 1998, 44]; the concept was developed by Cartan in an analytical context
and transferred by Serre to the algebraic case. The achievements of the concept
in the context of Zariski topology are restricted, according to Gelfand and Manin:

In the Zariski Topology [ . . . ] the nerve of any finite open covering has
the combinatorial type of a simplex. The same is true for any irreducible
algebraic variety. Therefore, purely topological invariants cannot distinguish
these varieties. The consideration of cohomology with coefficients in coherent
sheaves improves the situation, but this improvement appears to be insuf-
ficient. For example, one still lacks a good Lefschetz type formula for the
number of fixed points of a mapping [Gelfand and Manin 1996, 99].

The problem of the Lefschetz fixed point formula will be discussed in 4.2.2.

3.3 The Tôhoku paper

[Grothendieck 1957] is often presented as the most important paper for the devel-
opment of CT since [Eilenberg and Mac Lane 1945]. It has become common to call
the paper simply “the Tôhoku paper” (and its enormous relevance is also indicated
by the fact that there is such a nickname understood by many mathematicians
of several subdisciplines). In the following sections, I present the most important
developments in CT related to this work. A good overview about the content is
given in Buchsbaum’s review.

Grothendieck himself relates the paper to other work:

In Chapter III, we redevelop the theory of cohomology of a space with
coefficients in a sheaf and Leray’s classical spectral sequences. The exposition
given here presents a smoothing compared to [SC 50/51, [Serre 1955]], in par-
ticular insofar as nearly all essential results are obtained without making any
restriction on the nature of the spaces concerned; thus, the theory applies also
in the case of the non-separated spaces one encounters in abstract algebraic
geometry or in “arithmetical geometry” [[Serre 1955], reference to Cartier not
given]220 [p.119f].

The label “Géométrie Arithmétique” stems, according to [Cartier 2000, n.7], from
Erich Kähler’s [1958] concerned with diophantine analysis.

In [Grothendieck 1957], the two lines of development discussed so far meet:
the idea to employ sheaf theoretical methods in algebraic geometry, and the
220“Dans le Chapitre III nous redéveloppons la théorie de la cohomologie d’un espace à co-

efficients dans un faisceau, y inclus les suites spectrales classiques de Leray. L’exposé donné
ici représente un assouplissement par rapport à [SC 50/51, [Serre 1955]], en particulier en
ce que tous les resultats essentiels sont obtenus sans faire, à presque aucun moment [ . . . ],
d’hypothèse restrictive sur la nature des espaces envisagés ; de sorte que la théorie s’applique
aussi aux espaces non séparés qui interviennent en Géométrie Algébrique abstraite ou en “Géo-
métrie Arithmétique” [[Serre 1955], référence Cartier non parvenue]” .



120 Chapter 3. Category theory in Homological Algebra

systematic procedure of obtaining cohomology groups via derived functors221.
Grothendieck achieved a sheaf cohomology adapted for the intended methods by
an accent on the abelian variable; this accent was in fact already put by Car-
tan with his axiomatic method (see 3.2.2.3); however, Cartan’s existence proof
depends on the paracompactness of the base space.

The title “Sur quelques points d’algèbre homologique” is not very explicit as
to the content of the paper. It is a rather common form of a title in the French
literature; nevertheless, the resemblance with the title of [Fréchet 1906] could be
more than mere coincidence since Grothendieck began his research in functional
analysis. Was he suggesting that his text too “opened a world”—like Fréchet’s,
where the idea was developed to consider functions as points in a space with
infinitely many dimensions222?

3.3.1 How the paper was written

In historical investigations concerning the mathematical work of Grothendieck,
some traits of his personality play a crucial role. Cartier laid the foundation
stone for a biography of Grothendieck [Cartier 2000; 2001]; a further interesting
contribution, in particular as far as Grothendieck’s very individual way of work is
concerned, is [Herreman 2000]. Further work has been done especially by Winfried
Scharlau223. I do not make an attempt here to present a biographical sketch of
my own.

3.3.1.1 The main source: the Grothendieck–Serre correspondence

Very important insights in the history of the Tôhoku paper can be found in the
correspondence of Grothendieck and Serre which has been published recently by
the SMF [Colmez and Serre 2001]. The analysis of the account of the Tôhoku
paper given in these letters will constitute a substantial part of my own account;
consequently, passages from these letters will be referred to repeatedly. For the
convenience of the reader, part of the passages concerning the Tôhoku paper is
reproduced hereafter; more precisely, what is reproduced are longer connected
passages while more marginal passages are cited directly at the places where they
are used in the subsequent sections224. This was done in the conviction that one
should avoid if possible cutting up the letters into microscopical bits according
to the thematic background(s) of each bit, not only because a multiplication of
bibliographical references would be necessitated by such a procedure, but also

221It is misleading, however, to read the Tôhoku paper solely through its main application: it
contains some developments not necessary for this aim which might have had motivations of a
different kind. Such questions are discussed in 3.3.2.3 and 3.3.4.3.
222See [Krömer 1998, 94f] and 1.3.2.1.
223See http://www.math.jussieu.fr/∼leila/index.php.
224The passages concerning the submission of the manuscript to Bourbaki have been discussed

in my paper [Krömer 2006b] where some aspects of the influence of Bourbaki on Grothendieck’s
article are analyzed; this discussion will not be repeated in the present book.
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because the respective citations would lose their context, with the risk of damaging
historical interpretation. The disadvantage to put up with is that the reader will
have to turn some pages when wishing to check my argumentation; I hope he or
she will accept my apologies for that.

Sections 3.3.1.2–3.3.1.3 are devoted to comments on and completion of the
information of a more bibliographical kind contained in the correspondence; it
will turn out that Grothendieck’s first writing up of the manuscript was largely
independent of anterior work by other authors and of established terminological
traditions, and that he only afterwards aligned his text to these standards, asked
to do so by Serre among others. But the letters give also important information on
the creation process of Grothendieck’s approach itself; the corresponding citations
contained in the present section will be used later on.

Grothendieck’s written correspondence with Serre begins actually at the same
time as his studies in sheaf cohomology (both authors being together at Paris in
the years before). In a letter dated February 26, 1955, Grothendieck writes to
Serre from Lawrence, Kansas:

I have observed the following: if one formulates the theory of derived
functors for more general categories than modules, one obtains for a small

#7charge simultaneously cohomology of spaces with coefficients in a sheaf: one
takes the category of sheaves over the given space X, one considers the functor
ΓΦ(F) with values in the abelian groups, and one takes derived functors.
Existence follows from a general criterion, and fine sheaves play the role

#8of “injective” modules. One obtains also the fundamental spectral sequences
as special cases of delightful and useful general spectral sequences. But I
am not yet sure whether everything works that well in the case of a non-
separated space, and I recall your doubts concerning the existence of an exact

#9cohomology sequence in dimensions ≥ 2. By the way, probably all this can
be found more or less explicitly in the Cartan and Eilenberg book, which to
see I have not yet had the chance225 [p.13f].

#10
Serre answers from Paris (March 12, 1955):

The fact that the cohomology of a sheaf is a special case of derived functors
(at least in the paracompact case) is not in the Cartan–Sammy. Cartan was
aware of it and had told Buchsbaum to work it out, but it does not seem

#11that the latter has done it. The interest of this would be to see which are

225“Je me suis aperçu qu’en formulant la théorie des foncteurs dérivés pour des catégories plus
générales que les modules, on obtient à peu de frais en même temps la cohomologie des espaces
à coefficients dans un faisceau : on prend la catégorie des faisceaux sur l’espace donné X, on
y considère le foncteur ΓΦ(F) à valeurs dans les groupes abéliens, et on prend les foncteurs
dérivés. L’existence résulte d’un critère général, les faisceaux fins joueront le rôle des modules
« injectifs ». On obtient aussi les suites spectrales fondamentales comme cas particuliers de
délectables et utiles suites spectrales générales. Mais je ne suis pas encore sûr si tout marche
aussi bien dans le cas d’un espace non séparé, et me rappelle tes doutes sur l’existence d’une
suite exacte en cohomologie en dimensions ≥ 2. D’ailleurs, probablement tout ça se trouve plus
ou moins explicitement dans le bouquin Cartan–Eilenberg, que je n’ai pas encore eu l’heur de
voir encore”.
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the right properties of fine sheaves to use; thus one could probably decide
whether there are enough fine sheaves in the non-separated case (I think that
the answer is no, but I am absolutely not sure about that!)226 [p.15].

Grothendieck writes to Serre from Lawrence, dated June 4, 1955:

Please find enclosed the result of my first formal cogitations about the
foundations of homological algebra. [ . . . ] I will consider the theory of the
spectral sequence properly in the abelian classes [ . . . ] I am already convinced#12
that the Bourbakian way to do homological algebra will be to change the
abelian class all the time, just as one changes the scalar field or the topology
in functional analysis227 [p.16f].

The paper cited here as “the result of my first formal cogitations about the foun-
dations of homological algebra” seems to be the “paper on homological algebra
(papier sur l’Algèbre homologique)” written for Bourbaki and mentioned by Serre
in his letter dated July 13, 1955 from Paris. Instead of reproducing this passage228,
I start quoting the letter just where Serre leaves the subject “Bourbaki”:

That’s it for Bourbaki. But your paper on homological algebra gives rise
to another, completely disjoint problem, namely concerning the publication in
a journal. You have to know that Buchsbaum in his thesis (to appear in Trans.
Amer. Soc.) and in his appendix to the Cartan–Sammy book envisaged a
system which closely resembles the one you provided for your abelian classes
(I don’t know whether you were aware of this when you wrote your abelian
classes—which by the way doesn’t matter). I don’t know his basic axioms,
but Sammy affirms that they are equivalent to C1, C2, C3. He had perfectly
seen (and said) that the existence of enough injectives implies the existence
of a good theory of derived functors. But he had not been able to show
that sheaves have enough injectives, lacking a proposition like the one of your
pages 7,8. Thus, Sammy proposes the following: to publish a paper in the
Transactions where you will give your axioms C4,5,6, the notion of generator#13
for a class, the existence of injectives if there is a generator and if . . . [229], the
fact that sheaves satisfy your axioms, and the comparison between traditional
cohomology of sheaves and the one obtained by your method. Since you could#14

226“Le fait que la cohomologie d’un faisceau soit un cas particulier des foncteurs dérivés (au
moins dans le cas paracompact) n’est pas dans le Cartan–Sammy. Cartan en avait conscience,
et avait dit à Buchsbaum de s’en occuper, mais il ne semble pas que celui-ci l’ait fait. L’intérêt
de ceci serait de voir quelles sont au juste les propriétés des faisceaux fins qu’il faut utiliser ;
ainsi on pourrait peut-être se rendre compte si, oui ou non, il y aura suffisamment de faisceaux
fins dans le cas non séparé (je pense que la réponse est négative, mais je n’en suis nullement
sûr !)”.
227“Ci-joint le résultat de mes premières cogitations en forme sur les fondements d’algèbre ho-

mologique. [ . . . ] je vais regarder proprement la théorie de la suite spectrale dans les classes
abéliennes [ . . . ] J’ai déjà la conviction que la façon bourbachique de faire de l’algèbre ho-
mologique, c’est de changer de classe abélienne à tout instant, comme on change le corps des
scalaires, ou la topologie en analyse Fonctionnelle”.
228Compare n.224.
229This omission is at least in the printed version and probably also in the original of Serre’s

letter; Serre probably left out AB 5—which to write down or to paraphrase is tedious, after all,
see 3.3.3.4.
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lean on Buchsbaum for everything concerning the trivial stuff about classes,
#15you basically would have to write down only the interesting part, and this

would be quite good. One should be able to write down all this quite shortly,
and without great trouble, and it would be very useful for the people. What
do you think about it? Mind you, Sammy could take care to provide you a
copy of Buchsbaum’s thesis230 [p.17ff].

The pages given by Serre refer to the text Grothendieck handed in to Bourbaki;
this text is not accessible at the given moment (compare [Krömer 2006b])231

The next published letters do not deal with the text on algèbre homologique;
it is only in his letter to Serre dated September 1, 1956 (without address) that
Grothendieck comes back to the question:

I spent the larger part of the month with the writing of my multiplodocus
of homological algebra; I tried to be concise, but although there are practically
no proofs, I will have more than 100 pages (of which 80 are written), large
format. Do you have a proposal where to publish it? (not in France where I
already publish my long and bothering “Fredholm theory”)232 [p.43].

The next published letter is again by Grothendieck (Paris, September 19, 1956);
a corresponding letter by Serre is not published.

Thank you for your letter. I can’t publish my article neither the American
Journal, since I publish already the fibres on the Riemann sphere there, nor in
the Transactions, since Sammy asked me to retype the manuscript (because

230“Voilà pour Bourbaki. Mais ton papier sur l’algèbre homologique pose un autre problème,
absolument disjoint, celui de la publication dans un journal. Tu dois savoir que Buchsbaum avait
envisagé dans sa thèse (à paraître aux Trans. Amer. Soc.) et dans son appendice au bouquin de
Cartan–Sammy un système absolument semblable à celui de tes classes abéliennes (j’ignore si tu
le savais quand tu as rédigé tes classes abéliennes—c’est d’ailleurs sans importance). Il avait pris
des axiomes de base que j’ignore, mais que Sammy affirme être équivalents à C1, C2, C3. Il avait
fort bien vu (et dit) que l’existence de suffisamment d’injectifs entraîne l’existence d’une bonne
théorie des foncteurs dérivés. Mais il avait été incapable de démontrer que les faisceaux possèdent
assez d’injectifs, faute d’avoir une proposition comme celle de tes pages 7,8. Sammy te propose
donc ceci : publier un papier aux Transactions où tu donnerais tes axiomes C4,5,6, la notion de
générateur pour une classe, l’existence d’injectifs quand il y a un générateur et que . . . , le fait
que les faisceaux vérifient tes axiomes, et la comparaison entre la cohomologie traditionnelle des
faisceaux et celle que l’on obtient par ton procédé. Comme tu pourrais t’appuyer sur Buchsbaum
pour tout ce qui concerne les choses triviales sur les classes, tu n’aurais au fond qu’à rédiger la
partie intéressante, et ce serait très bien. Tout ça doit pouvoir se rédiger brièvement, et sans
trop de peine, et ça rendrait bien service aux gens. Qu’en dis-tu ? Bien entendu, Sammy pourrait
s’arranger pour te fournir une copie de la thèse de Buchsbaum” .
231Actually, even without having seen this text, I suggest that Serre was mistaken when saying

that Eilenberg affirmed that Grothendieck’s axiom C3 is among those equivalent to Buchsbaum’s
basic axioms; I think that this axiom is the one later called AB 3 (compare 3.3.3.4) which is
lacking in Buchsbaum’s axiom system (compare 3.3.4.1).
232“J’ai passé le plus clair du mois passé à la rédaction de mon multiplodoque d’algèbre homo-

logique ; j’ai essayé d’être concis, mais bien qu’il n’y ait pratiquement pas de démonstrations, il
y en aura pour plus de 100 pages (dont 80 sont rédigées), grand format. As-tu une suggestion
où le publier (pas en France, où je publie déjà ma longue « théorie de Fredholm » de malheur)” .
Grothendieck’s “Fredholm theory” is, according to a note by Serre, [Grothendieck 1956].
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it didn’t conform to his very severe editorial taboos), and I don’t intend to
do so233 [p.45].

Thus, it seems that Serre in an absent letter or by different means of commu-
nication proposed the mentioned journals. The next letter is by Serre (Mexico,
September 23, 1956); p.47:

As far as your paper is concerned, I didn’t get Sammy’s answer yet. I
fear that he has already left New York and departed to India. But I find
idiotic your objections to publishing in the Transactions: Sammy simply de-
mands that a manuscript be legible without effort of intelligence, and this is
certainly the least. Armed with some glue and some patience, you wouldn’t
certainly need more than a day to retype the doubtful passages and to obtain
a presentable manuscript: can’t you try, really? (At least if you don’t find
another solution, obviously)234.

This passage gives rise at least235 to the following questions:

1) What was the answer by Eilenberg that Serre waited for? Had Serre written
to Eilenberg to intervene in favour of Grothendieck?

2) Did Eilenberg tie the publication of Grothendieck’s manuscript to some sub-
stantial changes? Did he do so in a letter? What are these changes?

Unfortunately, our present knowledge of complementary sources apparently does
not allow us to answer these questions completely, and it is not always the most
important questions on which most can be said. Let us summarize what can be
said:

ad 1) The first letter by Serre contained in the Eilenberg records is dated November
07, 1957 and appears to be an answer to a letter by Eilenberg wherein the
latter asked for a preprint (or proofs) of Godement’s book and for an offprint

233“Merci pour ta lettre. L’American Journal ne marche pas pour mon article, puisque j’y
publie déjà les fibrés sur la sphère de Riemann ; et les Transactions non plus, car ne m’étant
pas conformé aux tabous de rédaction très sévères de Sammy, il voudra me faire retaper le
manuscrit, et je n’en ai pas l’intention”.
234“En ce qui concerne ton papier, je n’ai pas encore eu de réponse de Sammy. Je crains qu’il

n’ait déjà quitté New-York pour l’Inde. Mais je trouve idiotes tes objections à publier dans les
Transactions : Sammy exige seulement qu’un manuscrit soit lisible sans effort d’intelligence, et
c’est bien le moins. Armé d’un peu de colle et de patience, il ne te faudrait sûrement pas plus
d’une journée pour retaper les passages douteux, et avoir un manuscrit présentable : ne peux-tu
vraiment essayer ? (A moins évidemment que tu ne trouves une autre solution)”.
235There are also questions of a more particular interest, such as “Had Eilenberg in fact already

departed to India around September 19, 1956?” Actually, Eilenberg was guest professor at
Tata Institute during the academic year 1956-57, this can even be found in the Who’s Who of
2001. As to more precise information, Eilenberg’s personal file contained in the records mentions
only a leave of absence—1956-1957—without salary, accorded April 18, 1956, and Eilenberg’s
nomination as Executive officer of the Dept. of Mathematics dated April 02, 1957 (which might
indicate that he was back in New York by then). Precise information as to the date of departure
might be contained in the extensive private correspondence archived at Columbia University but
not yet studied.
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of Grothendieck’s Tôhoku paper (Serre incidentally was not able to send him
anything the like, so one may note that Eilenberg had probably not seen
these seminal works by then). In brief: we cannot answer question 1) right
now.

ad 2) What would be most important here is information about what is precisely
meant by “Sammy’s very severe editorial taboos”; however, a letter by Eilen-
berg to Grothendieck (or to Serre) concerning these things is not known to
exist. Maybe part of the exchange between Eilenberg, Grothendieck, and
Serre on this subject was made at the occasion of the Bourbaki summer
meeting in 1956 (the minutes of which are in La Tribu 36; actually, Eilenberg
and Serre were among the participants, but Grothendieck was not). Buchs-
baum’s priority (mentioned by Serre in his letter dated July 13, 1955; see
above) was probably not the only thing at issue here, since this does not con-
cern the readability of the text, after all, while Serre writes “Sammy simply
demands that a manuscript be legible”.

Grothendieck’s answer to Serre’s letter dated September 23, 1956 is dated Novem-
ber 13, 1956 (without address; there are no indications that letters are lacking in
between); p.49:

I finished my lousy paper on homological algebra (but it is the only way
I have to understand, by insisting, how the things work) [ . . . ]; I proposed it
to Tannaka for the Tôhoku, it seems that book-sized articles don’t frighten
them236.

Serre answers November 17, 1956 (without adress); p.52:

I feel sorry for the miserable japanese printers who will have to struggle
with your handwritten corrections237.

To conclude, it seems that there were two more or less separated periods of work
on the Tôhoku paper: the paper’s content was developed mostly during Grothen-
dieck’s time in Kansas in 1955 (compare the next section), while the paper was
written down when Grothendieck was already back to Paris for some time in the
second half of 1956.

3.3.1.2 Grothendieck’s Kansas travel, and his report on fibre spaces with
structure sheaf

Grothendieck spent 1955 at the University of Kansas in Lawrence238. Serre re-
calls that “he had been invited (by N.Aronszajn I guess) because of his work on
236“J’ai fini mon emmerdante rédaction d’algèbre homologique (mais c’est la seule façon que

j’aie pour comprendre, à force d’insister, comment marchent les choses) [ . . . ] ; je l’ai proposée
à Tannaka pour le Tôhoku, il paraît que les articles-fleuves ne les rebutent pas”.
237“je plains les pauvres imprimeurs japonais qui vont devoir se battre avec tes corrections à

la main. . . ”.
238Exact dates are not known to me but can be estimated from the published correspondence

with Serre. The first letter by Grothendieck from Lawrence (which is incidentally the first



126 Chapter 3. Category theory in Homological Algebra

topological vector spaces (il avait été invité (par N.Aronszajn, je crois) à cause
de ses travaux sur les E.V.T.”) [Colmez and Serre 2001, 255]. I do not know
whether Grothendieck really spoke about or worked on topological vector spaces
in Kansas; one outcome of his stay was the report No. 4, August, 1955 concerning
the National Science Foundation Research Project on Geometry of Function Space
(Research Grant NSF-G 1126), so it appears as if the financial support making
his stay possible was originally in fact related to functional analysis239.

However, the report is actually entitled “A general theory of fibre spaces with
structure sheaf” [Grothendieck 1955a] and so is clearly not on topological vector
spaces. Incidentally, the report’s content does have in common two important
things with the Tôhoku paper, namely a clear and explicit orientation towards
the use of categorial language, and a discussion of the two sheaf definitions; these
two aspects will be discussed in sections 3.3.2.2 and 3.3.3.1, respectively. The
interest in knowing something about the context in such a discussion, together
with the fact that the report is not easily accessible by now, justifies presenting
its main concern, namely non-commutative cohomology, to some extent here. As
Grothendieck says:

The use of cohomological methods in this connection has proved quite
useful, and it has become natural, at least as a matter of notation, even when
G is not abelian, to denote by H1(X, G) the set of classes of fibre spaces on
X with structure sheaf G, G being [ . . . ] a sheaf of germs of maps [ . . . ] of
X into G [p.1].

This approach actually relates to Serre’s work discussed above. Chapter V (p.62ff)
is on the classification of fibre spaces with structure sheaf240. This chapter begins
with a definition of a cohomology functor H1(X, G) of the Čech type (but with
sets as values). Grothendieck explains on p.68 the precise relation between his
definition and Serre’s from FAC: the definitions coincide when G is abelian—and
in this case H1(X, G) is a group. However, “if G is non-commutative, there is no
natural way of defining a group structure in H1(X, G). However, we can define in
this set a privileged element, the trivial or neutre or unit element [ . . . ]”. With this
element at hand, a “generalized exact cohomology sequence” can be defined241.

But Grothendieck had apparently still time left for other things; in a letter
datelined Lawrence, 28.1.1955, he wrote to Serre: “I have practically all the time
for me here (J’ai ici pratiquement tout mon temps à moi)” [Colmez and Serre
2001, 1]. So he was able to start also his work on abelian categories in Kansas.
This is indicated in [Grothendieck 1957, 119 n.1]:

published letter at all) is dated January 28, 1955 and the last one June 4, 1955; the first letter
written back in France (Bois-Colombes) is dated December 15, 1955.
239It should in principle be possible to use the above given information concerning this research

grant to find more historical information concerning Grothendieck’s stay in the archives of the
National Science Foundation.
240I will not reproduce here all the technical definitions involved. Concerning the sheaf definition

employed by Grothendieck in the report, compare section 3.3.3.1.
241It would be interesting to study in what sense this device provides a classification of fibre

spaces with structure sheaf.
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The essentials of chapters I, II, IV and of a part of chapter III have been
developed in spring 1955, at the occasion of a seminar on homological algebra
held at the University of Kansas242.

Concerning this seminar, see also n.248 below. Now, [Mac Lane 1988a, 339] re-
members: “[Grothendieck] came to Chicago in the spring of 1955 and lectured on
[abelian categories]”. Mac Lane was professor at Chicago then, so he will probably
be right about the place. Now, Grothendieck, in his letter datelined Lawrence,
June 4, 1955, writes: “I don’t move from here except in August when I will be at
Chicago (if not already back in France because of my mother)”243 (Colmez and
Serre, 17). The fact that there is no answer to Serre’s letter dated July 13, 1955
could indicate that the latter case arose. But it is certain that Grothendieck gave
a lecture in Chicago in 1955 with Mac Lane in the audience244. Perhaps he gave
actually a first one in spring and was invited to come back in August but was not
able to do so because of his mother.

3.3.1.3 Preparation and publication of the manuscript

The writing and the final publication of the text can, in view of the above cited
passages from the correspondence, be summed up as follows:

Grothendieck envisaged first a publication of the text in the Transactions of
the AMS; moreover, he handed in the text to Bourbaki (compare n.224). At the
occasion of a Bourbaki congress, Eilenberg pointed out that Grothendieck’s text
overlapped partially with Buchsbaum’s dissertation, and he apparently suggested
to change this (or at least to make it explicit) and moreover pointed out prob-
lems concerning the readability of the text. Serre indicated this to Grothendieck
who—being in America—did not participate in the congress; however, Grothen-
dieck was not ready to make all changes (despite being encouraged to do so by
Serre) but confined himself to mentioning Buchsbaum in the preface and to look-
ing for another journal. He managed finally to have it published in the Tôhoku
Mathematical Journal, then edited by Tannaka.

At least some terminological corrections must have been made. That Grothen-
dieck originally employed a different terminology is indicated by the fact that the
terminology in the published version is not altogether homogeneous. At two places

242“L’essentiel des Chapitres I,II, IV et une partie du Chapitre III a été développé au printemps
1955, à l’occasion d’un séminaire d’Algèbre Homologique donné à l’Université de Kansas” .
243“Je ne bouge pas d’ici sauf en Août, où je serai à Chicago (si je ne suis pas déjà rentré en

France à cause de ma mère)”.
244According to McLarty [2006b], Mac Lane told him that Grothendieck lectured in Chicago

around 1958. It is clear from a letter by Buchsbaum to Eilenberg, dated October 31, 1958 and
contained in the Eilenberg records, that Grothendieck was in the USA around that time. But
there is no point in conjecturing that Mac Lane confounded 1955 with 1958 since the sentence
“it was amply clear that [Grothendieck] had no knowledge of earlier work by Mac Lane and
Buchsbaum” would make no sense if the lecture in question were held in 1958; see below.
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in the Tôhoku paper, forgotten corrections245 are so relevant that a historical dis-
cussion cannot avoid commenting on them:

• on p.125, Grothendieck speaks about homomorphisme where he obviously
should have said isomorphisme (for more details, see 3.3.4.3);

• on p.138, he employs the term “classe abélienne” (this will be discussed in
detail in 3.3.2.3).

It is true, a further place on p.140 is without relevance as far as content is con-
cerned, since it is obviously a misprint; on the other hand, this lends support to
the hypothesis that in the other cases a correction was neglected, too (and hence
that they are not intentional, but mistaken).

3.3.2 Grothendieck’s work in relation to earlier work in homological
algebra

3.3.2.1 Grothendieck’s awareness of the earlier work

The published version of the Tôhoku paper has substantial references to Cartan
and Eilenberg246 and Buchsbaum; in [1959a], Grothendieck describes the Tôhoku
paper as a form of the Cartan and Eilenberg homological algebra (see also [McLarty
2006b]). However, it is clear from the correspondence with Serre that Grothen-
dieck was at first not aware of the fact that his work was partially anticipated
in Buchsbaum’s dissertation. Hence it is reasonable to investigate more closely
to what degree Grothendieck had knowledge of the work of his predecessors in
homological algebra. [Herreman 2000] points out that Grothendieck practically
never took note of the literature; in the case of Buchsbaum, this is not astonishing
since the published versions of Buchsbaum’s contribution became available only
after Grothendieck started to work on the subject.

Grothendieck was aware that Cartan and Eilenberg were writing on the sub-
ject, as is obvious from his correspondence with Serre. Actually, all four of them
were Bourbaki members at the time and hence met regularly and might have dis-
cussed projects together. Despite the fact that [Cartan and Eilenberg 1956] was
not yet available at the time when Grothendieck was in Kansas247, he had a certain
idea about the content of this book248. Thus, Grothendieck had his knowledge
probably from the Séminaire Bourbaki249 or from personal communication.
245In the Grothendieck–Serre correspondence as well, the problems of proofreading are men-

tioned; see the passage quoted from Serre’s letter dated November 17, 1956 in 3.3.1.1.
246Compare pages 140, 142 and 143 of the paper.
247See section 3.1.1.
248He writes to Serre (dated February 18, 1955 from Lawrence, Kansas): “I intend to give

a lecture on homological algebra here, following the (supposed!) lines of the Cartan–Eilenberg
book (J’ai l’intention de faire un cours d’algèbre homologique ici, suivant les lignes (supposées !)
du bouquin de Cartan–Eilenberg)” ; a similar passage is 〈#10 p.121〉.
249See exposé 46 (Mai 1951), Eilenberg, “Foncteurs de modules et leurs satellites”, [Eilenberg

1951].
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“In preparing [[Grothendieck 1957]], Grothendieck apparently rediscovered the
notion of an abelian category” [Mac Lane 1981, 25]. Grothendieck worked out the
concept of abelian category independently of Buchsbaum and Mac Lane; “as I
heard his lecture [in Chicago in the spring of 1955; see 3.3.1.2], it was amply clear
that he had no knowledge of earlier work by Mac Lane and Buchsbaum” [Mac Lane
1988a, 339]. Did Mac Lane point out to him the existence of this earlier work at
this occasion? Serre communicated Eilenberg’s pointers concerning Buchsbaum
to Grothendieck in a letter dated July 13, 1955 (hence, if Mac Lane’s memory
is right, after the Chicago talk; however, see also 3.3.1.2); this would have been
hardly necessary if Mac Lane had told him already in spring. Was Grothendieck’s
manuscript for the Bourbaki congress already finished when he delivered the talk
at Chicago? From [Colmez and Serre 2001] one learns only that he sent it to Serre
on June 4, 1955. Even Serre had knowledge of Buchsbaum (however little about his
work) when writing his letter dated March 12, 1955 〈#11 p.121〉. [Grothendieck
1957, 119] mentions at least the overlappings and the differences with [Buchsbaum
1955] while [Mac Lane 1950] is only mentioned in the bibliography.

3.3.2.2 Grothendieck’s adoption of categorial terminology

Apparently the first mathematical publication of Grothendieck where he uses the
terms “functor” and “category” in the technical sense is the Kansas report [1955a]
(for the situation in [1955b], compare n.252). In the introduction of this report,
he says (p.1f): “The functor aspect of the notions dealt with has been stressed
throughout, and as it now appears should have been stressed even more”. Actually,
“stressing the functor aspect” in most cases means to indicate for each type of
objects introduced the corresponding notion of homomorphism, as for example on
p.21 for sheaves (compare 3.3.3.1).

On p.45ff, Grothendieck constructs what he calls the associated fibre space
(a construction too technical to be reproduced here) and studies the “functorial
behaviour” of this construction (i.e., defines homomorphisms of such objects and
checks the functor properties). On p.48, he passes to a “functorial characterization
of the associated fibre space”: he defines several categories (in the technical sense
and using this terminology) of fibre spaces and functors between them (the term
“covariant” appears). In proposition 4.4.3 (p.51), it turns out that the associated
fibre spaces form essentially a functor category (he does not use this term but says
“there is a natural one-to-one correspondence between [associated fibre spaces and
certain functors]” and leaves the definition of the homomorphisms between the
functors to the reader). These considerations are closed by the following

Remark. In fact, a more abstract and general formulation of these results
should be given, by taking the values for [the functors] in a more general
category than the specified category of all fibre spaces [ . . . ]. For instance, we
could take functors with values in the category of group bundles, or of prin-
cipal sheaves under G etc., obtaining a specific result for each given category.
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It is not indicated from where he had knowledge of categorial language. There
is no bibliography; Grothendieck cites [Steenrod 1951] in his introduction, but this
book seems not to be the source of his employment of categorial language250. We
saw that Grothendieck used the term “category” in a letter to Serre dated February
26, 1955; compare 〈#7 p.121〉.

3.3.2.3 The “classe abélienne”-terminology

[McLarty 2006b] thinks that “[Grothendieck] used Mac Lane’s term “abelian cate-
gory”, so there was surely an influence” I think rather that Grothendieck changed
his own terminology of classes abéliennes when receiving Buchsbaum’s disserta-
tion.

It is interesting that Grothendieck employed at first a terminology of his own
for the concept of Abelian category. There are several places in the sources where
the term “classes abéliennes” is used in a way in which “catégories abéliennes”
would be used in the Tôhoku paper:

• in the engagements of the Bourbaki congress 37 (1955.3), one reads “Grothen-
dieck [ . . . ] will send the proofs concerning abelian classes to Sammy”251;

• in the Grothendieck–Serre correspondence, compare 〈#12 p.122〉 as well as
non-quoted parts of Serre’s later dated July 13, 1955, Serre’s letter dated
December 22, 1955, and finally Grothendieck’s letter dated September 1,
1956;

• in [Grothendieck 1957, 138], the concept of subcategory (sous-catégorie) is
introduced; if a sous-catégorie C′ of a catégorie abélienne C fulfils a certain
condition, one can show “that then C′ is itself an abelian class (qu’alors C′

est elle-même une classe abélienne)”. For more details, see n.255.

The last mentioned example is probably one of the omitted corrections in the
Tôhoku paper (see 3.3.1.3).

Now, Grothendieck did use the term category well before; so why did he
continue to speak about classe abélienne252? In these years, Serre was an im-
portant interlocutor for Grothendieck; this is already indicated by the existence
250The terms “functor” and “category” do not appear in Steenrod’s index, and no mention of

Eilenberg’s joint work with Mac Lane or with Steenrod himself is made in the bibliography; the
papers by Ehresmann cited are too old to concern category theory. A quick reading of the table
of contents does not reveal any use of categorial language. Incidentally, it would certainly be
interesting to study the historical interrelations between Steenrod’s earlier work on fibre spaces,
continued by Leray (compare n.191) and the book cited by Grothendieck (who in a certain
manner continues in turn Leray’s work); but this subject would lead us too far away from our
main concern here.
251“Grothendieck [ . . . ] envoye à Sammy les démonstrations relatives aux classes abéliennes”.
252In his PhD thesis [Grothendieck 1955b], too, he speaks about “classe” throughout. Is “classe”

to be read as “category”? In [Serre 1989, 199] one reads that in [Grothendieck 1955b] a nouvelle
catégorie d’espaces vectoriels topologiques was introduced; but Serre used the term catégorie
probably rather in the sense of current language.
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and the nature of the correspondence. In [Serre 1953b], he had himself used the
terminology “classe” for totalities of groups closed under certain operations:

A nonvoid collection C of abelian groups is called a class if it satisfies the
following axiom:

(I). If, in an exact sequence L → M → N , the groups L and N are
elements of C, then M is an element of C253 [p.172].

Serre’s intention with this concept was the following:

C is stable under the operations of elementary algebra: subgroups, quo-
tient groups, extensions. Given a class C, one can introduce “C-notions”
which means that one neglects the groups of the class C (for example, a C-
isomorphism is a homomorphism whose kernel is an element of C)254 [p.171].

I suppose that Grothendieck—developing his study of problems of cohomology in
exchange with Serre—thought first of something similar to such classes255.

Who was chronologically the first to introduce certain concepts is obviously
less important for the history of these concepts than which applications were made
of them; concerning the concept of abelian category, [Mac Lane 1988a, 339] puts
it (in real modesty, taken into account his own unsuccessful attempt to define this
concept) thus: “the discovery which matters most is that which ties the concept to
other parts of mathematics—in this case to sheaf cohomology”.

3.3.3 The plan of the Tôhoku paper

In the preceding sections I pointed out that Grothendieck in most cases did not
explicitly continue earlier work in homological algebra. On this background, the
naive question of which are the genuine innovations in the Tôhoku paper is ill-
posed. In what follows, I shall rather try to present the main points of the work and
to analyze in particular what was the task accomplished by categorial concepts
and why they were able to do that. Thus, my investigation is not so much of

253“Une collection non vide C de groupes abéliens est dite une classe si elle vérifie l’axiome
suivant :

(I). Si, dans une suite exacte L → M → N , les groupes L et N appartiennent à C, alors M
appartient à C”.
254“C est stable vis à vis des opérations de l’algèbre élémentaire : sous-groupe, groupe quotient,

extension. La donnée d’une classe C permet d’introduire des “C-notions” où l’on “néglige” les
groupes de la classe C (par exemple, un C-isomorphisme est un homomorphisme dont le noyau
appartient à C)”.
255At least, Serre’s concept of classe is discussed in [Grothendieck 1957, 137ff]; Grothendieck

places the concept in the more general context of abelian categories by submitting the concept of
full subcategory (in our terms, a subcategory determined completely by the class of its objects)
to Serre’s condition (I) and obtaining thus the concept of a “fat” subcategory (sous-catégorie
épaisse). Grothendieck obtains then Serre’s “C-notions” in the quotient category obtained from
such a sous-catégorie épaisse. It is interesting that these constructions do not occur in the further
developments of the paper; hence, Grothendieck writes down here a piece of (abelian) category
theory for its own sake (however with possible applications—probably in continuation of Serre’s
work—; for example, this yields a method to obtain spectral sequences with vanishing entries).
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a historical one and more of a philosophical one (in the sense of 1.2.2.2: “Why
especially these assumptions and no others?”).

3.3.3.1 Sheaves are particular functors on the open sets of a topological space

As already noted in the propaedeutics at the beginning of section 3.2, a presheaf
in the now usual presentation of the theory is considered as a functor on the
category Open(X)op of the open sets of the topological space X . The point of
view of Grothendieck is somewhat more complicated: a système inductif is a special
catégorie définie par un schéma de diagrammes (p.133); a préfaisceau is a special
système inductif, defined on the set of open nonempty subsets of the topological
space (p.133 and 153). The reason for this apparently unnecessary complication
will be explained in 3.3.4.2.

At this point, the discussion concerning the relation between the various sheaf
definitions of section 3.2.2.2 is to be taken up again. As we saw there, Cartan in
SC 50/51 did show that (in Grothendieck’s terminology) to any presheaf F an
espace étalé (F̃ , p) can be construed; one considers now the local sections of p so
construed. These form again a presheaf F̃ . Actually, this presheaf is even a sheaf
(in the sense of Grothendieck, see hereafter); thus, one made, in a certain sense,
the original presheaf a sheaf. For this reason, this construction was at first called
“associated” or “generated” sheaf (faisceau associé or faisceau engendré); later it
was named somewhat strangely “sheafification” in English.

Now, as we have seen, the question under what conditions the presheaf ho-
momorphism F (U) → F̃ (U) (which I shall call h below) is an isomorphism was
left open by Cartan; in [Serre 1955, 200] there are conditions for the correspond-
ing morphism to be injective, resp. surjective (propositions 1, 2). In the Tôhoku
paper (and, to a certain extent, also in [1955a], see below), Grothendieck makes
from these conditions the new definition of the concept “sheaf” as a special case
of “presheaf” (“sheaf conditions”)256:

We say that the presheaf F is a sheaf if for every covering (Ui) of an
open set U of X by nonvoid open sets and every family (fi) of elements
fi ∈ F (Ui) such that φUijUifi = φUijUj fj for each couple (i, j) such that
Uij = Ui ∩ Uj �= ∅, there exists one and only one f ∈ F (U) such that
φUiUf = fi for every i257 [1957, 153].

Grothendieck repeats then the construction of the faisceau associé to a presheaf
(p.154); he notes that there is an isomorphism between them if and only if F

256The following quotation has only one condition; in other texts, another condition precedes
it and allows for leaving aside the unicity stipulations in the quoted condition (“and only one”);
see for example [Godement 1958, 109]. By φUV , Grothendieck denotes the arrow F (V ) → F (U)
(“restriction mapping”).
257“On dit que le préfaisceau F est un faisceau si pour tout recouvrement (Ui) d’un ouvert U

de X par des ouverts non vides, et toute famille (fi) d’éléments fi ∈ F (Ui) telle que φUijUi
fi =

φUijUj
fj pour tout couple (i, j) tel que Uij = Ui ∩ Uj �= ∅, il existe un f ∈ F (U) et un seul tel

que φUiUf = fi pour tout i”.
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is a sheaf according to the definition just given258; this yields an “equivalence
of the category of sheaves of sets over X and the category of espaces étalés over
X (équivalence de la catégorie des faisceaux d’ensembles sur X, [ . . . ] avec la
catégorie des espaces étalés dans X)” (I write the former category Shv(X), the
latter E/X .) Already Cartan was aware of the fact that there are two essentially
different modes of definition of a sheaf both of which have their own right. Serre
(and Grothendieck in Kansas, see below) showed that both modes are equivalent
under certain conditions. Grothendieck expresses this in a categorial language
since he wanted to affirm certain properties of one category also for the other
category. To this end, he introduces the concept of equivalence of categories for
the first time, see 3.3.4.3.

I did not yet analyze the discussion of the two sheaf definitions contained in
[Grothendieck 1955a]. According to the conclusion of section 3.3.1.1, this work is
not necessarily to be regarded as chronologically prior to the Tôhoku paper as far
as the definitions of the basic concepts are concerned; hence it might be justified
to analyze this second discussion only now. On p.12, Grothendieck introduces the
notation H0(X, E) for the set of sections of a fibre space, and on p.13, he regards
this construction as a functor. On p.16, he defines a sheaf of sets259 as a particular
kind of fibre space (with the projection map being a local homeomorphism). On
p.19, he presents an alternative definition “by systems of sets” (taking the sets
H0(U, E)). It is easily seen that all this parallels the discussion in the Cartan
seminar; the notation H0 for Γ indicates already the direction to be taken.

Here again, the sheaf conditions are motivated as the conditions guarantee-
ing that h (see above) is an isomorphism, and are indicated in Grothendieck’s
proposition 2.3.1 and a corollary (p.19f). The next proposition (p.20) says that
the sheaf obtained by sheafification (without using this terminology) is canonically
isomorphic to the original sheaf. (Grothendieck omits the proofs for all this260.)
Then he says:

The two preceding propositions show the essential equivalence of the no-
tion of sheaf on the space X, and the notion of a system of sets (EU) (U open
⊂ X) and of maps φV U for U ⊃ V , satisfying conditions (2.3.1.) and the
condition of corollary of proposition 2.3.1. Both pictures are of importance,
the second more intuitive, but the first often technically more simple.

Actually, a sheaf of groups is introduced on p.28 as a special case of a group
bundle (i.e., as special case of the topological definition via fibre spaces, not of the
258The presentation of the sheaf conditions as motivated solely from the question under

which conditions the homomorphism F (U) → F̃ (U) is bijective is misleading. As explained
in [Dieudonné 1989, 125f], [Houzel 1998, 42], and [Houzel 1990, 15], K.Oka developed, appar-
ently in collaboration with Cartan, a concept that closely resembles Grothendieck’s sheaf concept
(with sheaf conditions) in the context of holomorphic functions with varying domains of defini-
tion. However, Houzel stresses these developments in the context of Cartan’s transition to open
sets instead of Leray’s closed sets.
259The use of sets instead of groups or other algebraic objects is necessitated by the non-

commutative viewpoint of [1955a]; compare section 3.3.1.2.
260Compare the citation from [1955a] in section 4.3.
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functorial definition). While the concept of category is employed throughout in
[1955a] (compare section 3.3.2.2), Grothendieck does not speak about categories
of sheaves in this text. We may note for later reference that in this work, the
variable of the cohomology functor is still rather the space than the sheaf.

Grothendieck’s observation about the respective roles of the two definitions
is interesting since one would perhaps have expected that the first (topological)
definition is considered more intuitive261. At least, the topological definition mo-
tivates largely the terminology employed in today’s language: there, the elements
of the objects F (U) are called the sections of the sheaf. This terminology stem-
ming from the espaces étalés could not be motivated with the functorial definition
alone; but any sheaf in the functorial sense can, by virtue of sheafification, be
considered as the sheaf of sections of the corresponding espace étalé. Without the
above mentioned equivalence of categories, the functor Γ(U,−) : F �→ F (U) on
Shv(X) couldn’t even legitimately be called “section functor”. For what has been
demonstrated is precisely that any sheaf in the sense of Grothendieck is a sheaf
in the sense of Lazard and thus has sections, and that the set of sections over U
actually coincides with F (U).

At this stage, one cannot yet say that the functorial definition replaced the
topological definition. What is crucial here, rather, is the interplay of both defi-
nitions. There are two categories at one’s disposition, and the key for exploiting
the analogy is their equivalence. For the construction of sheafification establishes
a connection between both categories—and this construction is decisive for the
proof that sheaves form indeed an abelian category (see the next section); more-
over, sheafification is important for spectral sequences, for example the one used to
compare Čech cohomology and the “true” cohomology, or the spectral sequence of
a mapping (see 3.3.3.5 in both cases). We will see later how the situation changed
in favor of the functorial definition; see 4.1.2.2.

3.3.3.2 Sheaves form an abelian category

Grothendieck [ . . . ] recognized the crucial new example [of an abelian
category], that of the category of sheaves (of modules) over a fixed topological
space [Mac Lane 1981, 25].

David Buchsbaum [ . . . ] developed [an] axiomatic description [of abelian
categories]. Then Grothendieck [ . . . ] made the crucial geometric observation
that sheaves of abelian groups or of modules on a space form an abelian
category [Mac Lane 1988a, 339].

The structure of Grothendieck’s proof will be explored in 3.3.4.2 and 3.3.4.3.
Here, some remarks are to be made as to the claim that the idea to regard sheaves
as an example for abelian categories is a genuine contribution of [Grothendieck

261To understand this issue would amount to studying the role played by the two definitions
in [1955a]; it should be investigated in particular whether the topological definition offers really
technical advantages. It might be, after all, that Grothendieck mistakenly exchanged “first” and
“second” in his statement!
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1957]. Buchsbaum was equally well aware of the idea that the procedures de-
veloped in [Cartan and Eilenberg 1956] should be applicable to sheaves. This is
indicated by the following passage from the Grothendieck–Serre correspondence
〈#11 p.121〉: “Cartan was aware of [the fact that the cohomology of a sheaf is a
special case of derived functors] and had told Buchsbaum to work it out”262. Buchs-
baum does not point in his appendix of [Cartan and Eilenberg 1956] to sheaves
as the second standard example of an abelian category. In [Buchsbaum 1955, 1],
one reads:

[ . . . ] Theorem 5.1 [ . . . ] is proved in its full generality so as to be
applicable in the theory of sheaves.

We desist from giving applications to theory of sheaves as these would be
fragmentary.

The applications on sheaves which Buchsbaum aimed at might have been those
published later [Buchsbaum 1959; 1960]; his results and methods are related to,
but different from Grothendieck’s. See also 3.4.2.

3.3.3.3 The concentration on injective resolutions

Generally, in Cartan and Eilenberg homological algebra, it depends on the kind of
nonexactness and on the variance of a given functor whether projective or injective
resolutions are to be used in its derivation, for:

• if one wants to make exact a left exact functor, one is interested in the right
derived functors etc.;

• the right derived functors are obtained by using injective resolutions for all
covariant variables of the functor and projective resolutions for all contravari-
ant variables; vice versa for left derived functors [Cartan and Eilenberg 1956,
84].

Thus, in view of the properties of Γ, Grothendieck couldn’t help but be interested
in injective objects263.

Now, Pierre Cartier told me that the concept of injective module played
only a minor role in [Cartan and Eilenberg 1956], that it was introduced, so to
say, only for the sake of duality264, while the concept of projective module and of

262Actually, this passage is somewhat misleading; the true story is to be found in [McLarty
2006b] who cites personal communication with Buchsbaum according to which Cartan did not
pose Buchsbaum’s problem, but encouraged him in continuing work on sheaves which he never-
theless dropped later.
263The definition of “injective” of [Grothendieck 1957, 135] is the same as in [Godement 1958,

6]: M is injective if and only if Hom(A, M) is exact (and not only left exact). Godement proves
the equivalence of this definition and the Cartan and Eilenberg definition (which was given in
section 3.1.1.3 above).
264See also Eilenberg’s talk on satellites given in May 1951 to the Séminaire Cartan [1951]; as

in [Cartan and Eilenberg 1956], he presents mainly the projective case and says that the injective
case parallels it.
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projective resolutions have been very important. This may at first seem surprising
since Cartan and Eilenberg were obviously interested in functors with all kinds of
variance and exactness. Nevertheless, in [1956] the projective case is developed in
great detail, while the injective case is only sketched (ibid. p.78).

Actually, Buchsbaum’s duality theory (see 3.1.2.2) makes it possible to re-
strict the development of the derivation procedure in its general form to left derived
functors and projective resolutions. By a dualization process, the stipulation of
enough injective objects in a given category can be transformed to the stipulation
of enough projective objects in its dual category.

However, this does obviously not change at all the situation that at least one
of these two propositions has first to be proved for the duality principle to have any
effect. Moreover, the duality principle does not mean that one can choose for one
single functor whether one wants to work with injective or projective resolutions
(such a choice being possible only for so-called balanced functors, see hereafter);
one can choose simply whether one derives the functor itself or rather its dual
functor. Buchsbaum’s reason to stress his duality theory was probably that in
categories of modules (which are the main categories investigated by him and
Cartan and Eilenberg) always both sorts of resolutions are possible (and thus are
possible in the dual category as well).

To sum up: the degree to which a concept (here: injective resolutions) is
seen as intuitive might very well depend on the intended applications. In the
presentation of the calculus of derived functors in its general form, the concept of
injective resolution is in principle superfluous, as Buchsbaum points out; in the
search for sheaf cohomology, it is not (after all, the dual category of a category
of sheaves is certainly even more intricate an object than the category of sheaves
itself). Moreover, Cartan and Eilenberg were interested in the effective calculation
of derived functors—and projective resolutions are much better adapted for this
task than injectives (which seem to be rather remote objects). The discussion in
[Cartan and Eilenberg 1956, 96] concerning the balancedness property of a functor
in several variables is to be taken into account here, because this property allows
for leaving aside certain variables during the calculation of the derived functors
and thus to attain eventually the possibility to work exclusively with projective
resolutions. But such a procedure cannot be applied in the case of Γ, this functor
having only one abelian variable. Now, Grothendieck was not interested in the
algorithmic aspect; he wanted simply to give an existence proof (and no calculation
method) for sheaf cohomology.

A letter by Grothendieck to Serre indicates that Grothendieck thought at first
that fine sheaves could play the role of injective modules265 〈#8 p.121〉. Actually,

265Fine resolutions had already been used in the Séminaire Cartan, see 3.2.2.3; however,
Grothendieck did perhaps not use a “faisceau fondamental” in the sense of Cartan, or he wanted
already cohomology for general spaces. At least, Serre doubted the existence of an exact coho-
mology sequence in the case of Grothendieck’s approach through fine sheaves 〈#9 p.121〉—and
Cartan’s theory naturally has such a sequence. Maybe what Grothendieck tried to do here was
a kind of intermediate step between Cartan’s theory and the Tôhoku paper.
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the much stressed formal analogy is to some extent an analogy between fine and
injective. This is nicely pointed out in [McLarty 2006b] as follows: a cohomology
theory for spaces is a series of functors of abelian groups HnF for each sheaf F
on X which in particular satisfies HnF = 0 for n > 0 for fine F . A cohomology
theory of groups, on the other hand, is a series of functors Hn from G-modules
to Abelian groups which satisfies HnM = 0 for n > 0 for injective M . However,
there was a problem with fine sheaves: the existence of such resolutions depends
on paracompactness (see 3.2.2.3).

3.3.3.4 The proof that there are enough injective sheaves

Grothendieck is interested in abelian categories with a certain number of additional
properties that he266 abbreviates by AB 3 – AB 6; for our present purposes, only
AB 3 and AB 5 are relevant. AB 3 postulates the existence of all infinite direct
sums (p.128). AB 5 includes AB 3 and moreover concerns the ordering on the
subobjects (sous-trucs) of an arbitrary object A of the category. Let B be such
a sous-truc, and (Ai)i∈I be a family of such sous-trucs forming a directed set; let∑

i Ai denote the supremum of such a family, and P ∩Q the infimum of two sous-
trucs P, Q of A. AB 5 asserts that (

∑
i Ai) ∩ B =

∑
i(Ai ∩ B). The significance

of this axiom is not obvious at the present stage of our reading of Grothendieck’s
paper but will become clearer later on.

Grothendieck proves that categories of sheaves have “enough” injective ob-
jects; the demonstration takes two steps:

• it is shown that each object of an abelian category with generator (générateur)
(see below) and AB 5 has an injective resolution (théorème 1.10.1);

• it is shown that these conditions are met by a category of sheaves of abelian
groups over an arbitrary267 topological space and by similar categories (propo-
sition 3.1.1).

As soon as this is shown, one obtains the cohomology functor with coefficients
in a sheaf as the derived functor of ΓΦ(F ) (global sections with support in Φ).
Grothendieck’s definition of generator reads:

Let C be a category, and (Ui)i∈I a family of objects of C. One says
that this family is a family of generators of C if for every object A ∈ C and
every subobject B �= A one can find an i ∈ I and a morphism u : Ui → A
which doesn’t stem from a morphism from Ui to B. Then for every A ∈ C,
the subobjects of A form a set: in fact, a subobject B of A is completely

#16determined by the set of morphisms from objects Ui to A stemming from a

266For the sake of readability, Grothendieck’s symbolism �AB 3)� is changed here to �AB 3�,
and correspondingly for the remaining AB-axioms.
267By the way, Grothendieck’s procedure is not the only possible procedure to obtain a sheaf

cohomology independent of particular assumptions concerning the underlying topological space;
compare Godement’s use of “flabby” sheaves in [1958]. However, the framework of abelian cate-
gories seems to be crucial for all procedures.
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morphism from Ui to B. One says that an object U ∈ C is a generator of C
if the family {U} is a family of generators268 [p.134].

Grothendieck gives an equivalent characterization: U is a generator if and only if it
is possible to consider each object A as a quotient of a direct sum of identical copies
of U , indexed by Hom(U, A). As Grothendieck stresses himself, these definitions
and results can be carried out on the level of general (not necessarily abelian)
category theory provided AB 3 is satisfied. Then, Grothendieck writes down the
central result:

Theorem 1.10.1. If C satisfies the axiom AB 5) [ . . . ] and admits a
generator [ . . . ] then for every A ∈ C there exists a monomorphism from A
to an injective object M269 [p.135].#17

The proof of this runs as follows:

We will [ . . . ] construct a functor M : A → M(A) [ . . . ] from C to C and
a homomorphism f from the identity functor to M such that for every A ∈ C,
M(A) is injective and f(A) is a monomorphism from A to M(A). The proof
being essentially well known, we will sketch only the main points270.

It is interesting that Grothendieck labels the demonstration as essentielle-
ment connue271. It is true that Grothendieck’s proof is similar to the one given in
the case of modules by Baer and Cartan–Eilenberg (see section 3.1.1.3). [McLarty
2006b] suggests implicitly that Grothendieck obtained his proof by an analysis of
the proof in the case of modules: “Grothendieck saw that Reinhold Baer’s orig-
inal proof [ . . . ] was largely diagrammatic itself ”. But while this hypothesis is
indeed more appealing than to think that Grothendieck arrived independently at
his proof, it remains to be explained from where he had knowledge of the original
proof. For as we saw in section 3.3.2.1, he had not [Cartan and Eilenberg 1956]

268“Soit C une catégorie, et soit (Ui)i∈I une famille d’objets de C. On dit que c’est une famille
de générateurs de C si pour tout objet A ∈ C et tout sous-truc B �= A, on peut trouver un i ∈ I
et un morphisme u : Ui → A qui ne provienne pas d’un morphisme de Ui dans B. Alors pour
tout A ∈ C, les sous-trucs de A forment un ensemble : en effet, un sous-truc B de A est
complètement déterminé par l’ensemble des morphismes d’objets Ui dans A qui proviennent
d’un morphisme de Ui dans B. On dit qu’un objet U ∈ C est un générateur de C si la famille
{U} est une famille de générateurs”.
269“Théorème 1.10.1. Si C satisfait à axiome AB 5) [ . . . ] et admet un générateur [ . . . ] alors

pour tout A ∈ C, il existe un monomorphisme de A dans un objet injectif M”.
270“On va [ . . . ] construire un foncteur M : A → M(A) [ . . . ] de C dans C et un homomor-

phisme f du foncteur identique dans M , tels que pour tout A ∈ C, M(A) soit injectif et f(A)
soit un monomorphisme de A dans M(A). La démonstration étant essentiellement connue, nous
esquisserons seulement les points principaux”.
271There is a similar remark concerning proposition 1.8 on p.133 asserting that in an abelian

category with AB 3, each inductive system has an inductive limit (incidentally, this proposi-
tion is of some importance in the proof of théorème 1.10.1). In this case, Grothendieck proves
only part of the proposition and says: “we leave to the reader the proof of the remaining as-
sertions of proposition 1.8., since this proof is obviously well known (nous laissons au lecteur
la démonstration des autres assertions de la proposition 1.8., démonstration évidemment bien
connue)”.
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at his disposal; moreover, he does not cite Baer, and in view of his general atti-
tude towards literature, it is indeed not very plausible that he was aware of Baer’s
work. There remains the possibility that he learned about the proof from lectures
or personal communication, for example from Eilenberg’s talk on satellites given
in May 1951 to the Séminaire Cartan [1951] (but I do not know whether Grothen-
dieck was in the audience of this talk). In the printed version of Eilenberg’s talk,
the fact is mentioned (incidentally, this might be the first place in the literature
where the term injective is used in the sense of [Cartan and Eilenberg 1956]), but
not the proof. However, there are actually no proofs at all in this printed version;
since this version was typed only in July 1958, it may be that Eilenberg was asked
only then to submit some outline (without proofs) of his talk272. So it might very
well be that Eilenberg gave the proof on the blackboard.

As to the sketch of the main points announced by Grothendieck, he indicates
first a lemma providing a necessary and sufficient condition for the injectivity of
the object M(A) (yet to be constructed): “For every subobject V of the generator
U and every morphism v from V to M , v extends to a morphism from U to M
(pour tout sous-truc V du générateur U , et tout morphisme v de V dans M , v
se prolonge en un morphisme de U dans M)”. The proof of this lemma uses
the fact that in a category with generator, the sous-trucs of an object form a set
〈#16 p.137〉; more precisely, this fact is used to show that a collection of certain
prolongements (a particular kind of morphisms) form in turn a set. This new set
is then ordered by the relational property of a morphism to be a prolongement of
another; this ordering turns out to be inductive by AB 5, hence provides a maximal
element; the proof of the lemma is completed then by some considerations about
this maximal element.

Finally, Grothendieck indicates the construction for M and shows that M so
constructed actually satisfies the necessary and sufficient condition of the lemma.
To this end, another set of morphisms (again recognized as a set by the fact
that the sous-trucs form a set) is used as an index set for certain direct sums
(existing according to AB 3). The cokernel of a certain morphism between these
direct sums is then called M1(A); moreover, f(A) is defined as a certain morphism
M0(A) → M1(A) with M0(A) := A. This is the point of departure for a transfinite
induction: for every ordinal i, an object Mi(A) is defined which is connected in a
certain manner with Mi+1(A) by a morphism f(Mi(A)). In the case that i is a limit
ordinal, Mi(A) is defined as lim−→j<i

Mj(A); correspondingly for morphisms. This
process is to be continued until the least ordinal k whose cardinality is strictly
greater than the cardinality of the set of subobjects of the generator (“dont la
puissance est strictement plus grande que la puissance de l’ensemble des sous-
trucs [du générateur]”) ; by AB 5 and cardinality arguments, one can show then
that Mk(A) =: M(A) satisfies the condition of the lemma. Obviously, such a use
of cardinals and ordinals is possible only because all totalities considered are sets.

272While there are letters by Cartan dating from 1958 (concerning a reedition of [Cartan and
Eilenberg 1956]), there seems to be no direct evidence for my hypothesis in the Eilenberg records.
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The reader might be disappointed that I skipped systematically the precise
definitions of the various objects and morphisms occuring in the argument; these
definitions are certainly the ingenuous part of the proof in the sense that one has to
have the idea to define things thus to obtain a proof; moreover, their reproduction
would be prerequisite in a detailed analysis of the relation between Grothendieck’s
and Baer’s proof. I decided to emphasize rather the fact that the proof uses set
theory to some extent and does not manage to do with elementary arguments; this
observation will be important later on. [McLarty 2006b] points out that Grothen-
dieck (and Cartan and Eilenberg) corrected a set-theoretical error in Baer’s proof;
McLarty suggests that Grothendieck was reading manuscripts for Bourbaki’s book
on set theory [Bourbaki 1956] around that time (and was perhaps sensible to such
problems for this reason). It should be checked in the Bourbaki archives whether
such manuscripts really circulated around that time.

The task of CT is by no means limited to making possible the demonstration
of theorem 1.10.1: also in the proof that sheaves fulfill actually the assumptions
of the theorem (and thus admit of injective resolutions), categorial concepts play
a decisive role. This will be discussed in detail in section 3.3.4.3; for the moment,
it should only be noted that Grothendieck introduced new concepts not employed
by Buchsbaum273.

3.3.3.5 Furnishing spectral sequences by injective resolutions and the Riemann–
Roch–Hirzebruch–Grothendieck theorem

Among the problems with the Zariski topology not settled in [Serre 1955], certain
“methods used by [[Leray 1950]] or [SC 51/52]” could not be applied, that means,
certain spectral sequences could not be worked out (see 3.2.3.1). [Leray 1950]
develops his theory of spectral sequences only for Hausdorff spaces, because Leray’s
spaces are locally compact in the sense of Bourbaki (p.41), that means in particular
always Hausdorff. The progress of the Tôhoku paper is that now these spectral
sequences can also be worked out for the Zariski topology.

Spectral sequences were used by Cartan and Eilenberg as a tool for the
computation of the derived functors of composite functors. This entails a first
application of this concept in the Tôhoku paper, namely the “comparison between
traditional sheaf cohomology and the one obtained by the Grothendieck procedure
(comparaison entre la cohomologie traditionelle des faisceaux et celle que l’on ob-
tient par [le] procédé [de Grothendieck])” (proposed in 〈#14 p.122〉); cf. section
3.8 in the Tôhoku paper (p.174ff). Grothendieck achieves274 a construction that

273AB 5 certainly is not contained in [Buchsbaum 1955] since Buchsbaum avoids infinite sums
(see 3.3.4.1); I have the impression that the same is true for Grothendieck’s concept of generator.
274Cartan seems to have contributed partial results in this direction; Grothendieck writes in a

letter to Serre dated January 16, 1956: “Cartan just found a spectral sequence (by the way, the
one of Leray) which clarifies well matters as far as the relation between functorial cohomology
and the one computed by coverings (Cartan vient de trouver une suite spectrale (d’ailleurs celle
de Leray) qui éclaircit bien les choses pour les relations entre la cohomologie fonctorielle, et
celle calculée par recouvrements”).
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parallels the one given already by Leray in his 1946 series of papers (see 3.2.1):

The spectral sequence connecting Čech cohomology of an open covering
U to the true cohomology is an application of the spectral sequence of the
composed functors; its term Epq

2 has the value Hp(U , Hq(F )) where Hq(F )
is the sheaf associated to the presheaf V → Hq(V, F ) (hence the q-th right
derived functor of the inclusion functor of the category of sheaves in the
category of presheaves)275 [Houzel 1990, 19].

Now, the concept of spectral sequence is also a tool for the treatment of problems
of a relative kind (in the form of the “spectral sequence of a mapping” following
Leray’s study of mappings in 1946); this leads to the first great application of the
results of the Tôhoku paper to a problem of algebraic geometry, expressed in the
theorem of Riemann–Roch–Hirzebruch–Grothendieck.

Up to Hirzebruch, the Riemann–Roch theorem276 was a result connecting the
invariants of one algebraic curve to each other; this theorem had been generalized
first to surfaces and finally by Hirzebruch [1956] to arbitrary algebraic varieties,
but concerned always a fixed variety.

Grothendieck established the theorem in relative form, i.e., not any longer as
a theorem concerning a fixed variety, but a morphism of varieties f : X → Y (the
older absolute form can be obtained by substituting a single point for Y ). The
advantages of this procedure are (1) the proof is more flexible, because morphisms
can always be decomposed, for example in pieces that differ in dimension only by
1 (this yields the classical theorem); (2) the theorem can be applied much more
universally: one obtains propositions on families of curves. Another important
difference between the earlier work and Grothendieck’s contribution is that he
uses exclusively algebraic means277.

The source for this contribution is [Borel and Serre 1958]; an outline of the
main proof ideas is contained in [Dieudonné 1990, 3ff]. I shall not enter here a
detailed analysis of this work; instead, I would like to stress where precisely the
Tôhoku paper is relevant. The functors derived here are no longer Γ but functors
called f∗, f! etc. (i.e., certain constructions on sheaves which generalize Γ). The
Tôhoku paper is (by virtue of the spectral sequence of a mapping) decisive for the
“relative” accent:

Let f : X → Y be a morphism of a variety Y , and F a coherent algebraic
sheaf [ . . . ] on X. One defines, by Leray’s classical procedure, sheaves Rqf(F)

275“La suite spectrale reliant la cohomologie de Čech d’un recouvrement ouvert U à la vraie
cohomologie est une application de la suite spectrale des foncteurs composés ; son terme Epq

2 vaut
Hp(U , Hq(F )) où Hq(F ) est le faisceau associé au préfaisceau V → Hq(V, F ) (c’est le q-ième
dérivé droit du foncteur d’inclusion de la catégorie des faisceaux dans celle des préfaisceaux)” .
276For the history of this theorem, cf. [Hulek 1997] or [Mumford 1971]. In her dissertation

[Carter 2002], Jessica Carter submits several recent propositions for a structuralist ontology of
mathematics (Maddy, Shapiro etc.) to an examination along the various stages of development
of this theorem (including Grothendieck’s contribution).
277[Mumford 1971, 88] indicates that another purely algebraic proof can be found in [Washnitzer

1959].
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over Y by setting

Rqf(F)U = Hq(f−1(U),F) for every open set U of Y.

For q = 0, one obtains the sheaf associated to the presheaf H0(f−1(U),F);
it’s the direct image of the sheaf F . One can show (see Tôhoku) that the Rqf
are the derived functors of the functor F → R0f(F) (if F runs through the
category of all sheaves over X, coherent or not).

[ . . . ]
Note that Leray’s theory can be transposed without change (see Tôhoku);

there is a spectral sequence ending up at H∗(X,F) and with term Ep,q
2 =

Hp(Y, Rqf(F))278 [Borel and Serre 1958, 102].

“Leray’s theory” means here the theory of spectral sequences. According to [Borel
and Serre 1958, 111], such a spectral sequence, actually furnished by the Tôhoku
paper, is needed to prove that f!, as defined ibid., is actually a functor. Here
it becomes plain that [Serre 1955] left open important questions: even though
coherent sheaves settled the problem of the cohomology sequence, in the Riemann–
Roch proof (where all sheaves are coherent, which in turn is proved to constitute
no restriction) one needs the Tôhoku paper279.

3.3.4 Grothendieck’s category theory and its job in his proofs

3.3.4.1 Basic notions: infinitary arrow language

In his concept definitions and proof strategies, Grothendieck stresses clearly the
relevance of categorial concepts; in the same time, he keeps attached to the gov-
erning paradigm according to which all mathematical objects are, in last analysis,
ontologically sets, resp. elements of sets, and can consequently be treated by cor-
responding methods280. In particular, as we have seen (and will see again later in

278“Soit f : X → Y un morphisme d’une variété Y , et soit F un faisceau [ . . . ] algébrique
cohérent [ . . . ] sur X. On définit, par le procédé classique de Leray, des faisceaux Rqf(F) sur
Y en posant

Rqf(F)U = Hq(f−1(U),F) pour tout ouvert U de Y.

Pour q = 0, on trouve le faisceau associé au préfaisceau des H0(f−1(U),F) ; c’est l’image directe
du faisceau F . On peut montrer (cf. Tôhoku) que les Rqf sont les foncteurs dérivés du foncteur
F → R0f(F) (lorsque F parcourt la catégorie de tous les faisceaux sur X, cohérents ou pas).

[ . . . ]
Signalons que la théorie de Leray se laisse transposer sans changements (cf. Tôhoku) ; il y a

une suite spectrale aboutissant à H∗(X,F) et de terme Ep,q
2 = Hp(Y, Rqf(F))”.

279Another problem of a relative kind that admits no solution in the case of Zariski topology, not
even under restriction to coherent sheaves, will be discussed in chapter 4: “one still lacks a good
Lefschetz type formula for the number of fixed points of a mapping” [Gelfand and Manin 1996, 99].
In the situation described in chapter 4, it will be necessary to use a modified concept of topology;
the achievements of the Tôhoku paper are still at one’s disposal under these modifications, thus
showing clearly the advantage of the great generality of its conceptual framework.
280This has been pointed out above in the example of the proof of théorème 1.10.1; our essential

observation was that Grothendieck was interested in being able to treat certain constructions as
sets precisely because this enabled him to use cardinality arguments or to make the constructions
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3.3.4.3), it is decisive for his argumentation to dispose of infinite sums and similar
infinitary constructions in the categories under consideration; the results depend
thus on set theory and are nonelementary.

Let us analyze some of Grothendieck’s central concept definitions as far as
they use both categorial and set-theoretical language. It is interesting that for
Grothendieck, the morphisms of a category which have an object A as domain and
an object B as codomain always form a set which is denoted Hom(A, B) [1957, 122];
throughout the book, I will speak about “Hom-sets”, and about “categories with
Hom-sets”, in this case. The condition was not explicitly adopted in the Eilenberg–
Mac Lane paper; I will discuss its history, and its set-theoretical background, in
section 6.4.1. Grothendieck makes use of it from the most elementary definitions
on; here is an example:

Let C be a category and u : A → B a morphism in C. For every C ∈ C
one defines a function v → vu : Hom(C, A) → Hom(C, B) and a function
w → uw : Hom(B, C) → Hom(A, C). One says that u is a monomorphism or
that u is injective (resp. that u is an epimorphism or that u is surjective) if
the first (resp. the second) of the two functions is always injective281 [p.122].

Since these definitions of mono- and epimorphism refer to the set-theoretical prop-
erty of a set mapping between certain Hom-sets to be injective or surjective, they
do not at first glance look like diagram language at all. But this assessment
is unfair, because what the mono definition says is precisely that for all C and
v, v′ ∈ Hom(C, A), uv = uv′ implies v = v′; similarly for the epi definition. These
are precisely the usual characterizations in diagram language; see for instance [Ar-
bib and Manes 1975]! In particular, the group structure of the Hom-sets plays no
role, but anything is expressible on the level of general CT if only the Hom(A, B)
are sets. Grothendieck just uses a rather complicated idiom to express purely cat-
egorial things: he speaks about set-theoretical properties of set functions (here:
the right, resp. left, multiplication by u) between Hom-sets where he could simply
write down the equation. Actually, there are more cases in which Grothendieck’s
predilection for Hom-sets yields quite long-winded expressions for simple matters.
For instance, the idea that a morphism has a fixed codomain282 is expressed by
saying that some Hom-sets are disjoint; and the basic operation of arrow com-
position is explained by using Hom-sets, which means that the category axioms
have two quantifiers now: “for all quadruples of objects it is the case that for
all triples of elements of the corresponding Hom-sets such and such thing is the
case”—which seems needlessly complicated. The reason for this is probably the

obtained the indexing families for direct sums etc. Thus, he is clearly interested in methodological
implications of this paradigm, not in philosophical ones.
281“Soit donné une catégorie C et un morphisme u : A → B dans C. Pour tout C ∈ C,

on définit une application v → vu : Hom(C, A) → Hom(C, B) et une application w → uw :
Hom(B, C) → Hom(A, C). On dit que u est un monomorphisme ou que u est injectif (resp.
que u est un épimorphisme ou que u est surjectif) si la première (resp. la seconde) des deux
applications précédentes est toujours injective”.
282The role of this idea in the conceptual framework of CT is analyzed in section 5.3.2.4.
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following: Grothendieck tries to avoid to speak of “the class of all morphisms” of
a category over which he would have to quantify in order to formulate the en-
visaged statements in the now usual way; he replaces this class by the sets of all
morphisms between a pair of objects (one set for every such pair). He does so
probably because he hopes (erroneously) to avoid set-theoretical problems in this
way.

In view of later investigations, two observations are to be noted:

• what is to be expressed can in principle be expressed in set-theoretical terms
(one considers the category operation as a mapping between sets and formu-
lates properties of this operation as set-theoretical properties of this map-
ping);

• such a set-theoretical expression has an artificial look. One feels that one
makes a detour here, and the reason for this feeling may be described in the
language of mathematical logic thus: one thinks that actually a first-order
language with primitive predicate sign Γ (à la Lawvere—see 7.2.2—; not to
be confused with the section functor), i.e., a weaker language than ZFC would
suffice. But this conviction might very well be misleading since it depends
on the construction of the particular category the class of all morphisms of
which one wants to consider whether one is obliged, in order to do that, to
use the whole strength of ZFC (if not more).

One has the impression that Grothendieck was attached to the viewpoint that
the possibility of a reduction to set theory was necessary. One reason might
be that the text was conceived partly as a contribution to Bourbaki’s Éléments
(see [Krömer 2006b]) which induces a certain attachment to set-theoretical means
of expression283. A thorough distinction between what can be expressed in an
elementary framework and what calls actually for higher means of expression is not
so relevant from Grothendieck’s perspective where no metamathematical analysis
is aimed at.

Actually, we will see that Grothendieck was not simply influenced by Bour-
baki in adopting such an utterly set-theoretical approach but indeed had some
very good reasons to proceed as he did. To this end, let us first look at another
one of his definitions:

Let us consider two monomorphisms u : B → A and u′ : B′ → A. One
says that u′ surpasses or contains u (and one writes u ≤ u′) if one can factorize
u into u′v, where v is a morphism from B to B′ [ . . . ] We will say that the
two monomorphisms u, u′ are equivalent if for both of them, one surpasses
the other, respectively; in this case the corresponding morphisms B → B′

and B′ → B are inverse one to another. [ . . . ] Let us choose (for example
using the omnipotent symbol τ de Hilbert) a monomorphism in every class

283As already mentioned in section 3.3.3.4, [McLarty 2006b] suggests that Grothendieck was
probably reading manuscripts for Bourbaki’s chapter on set theory when writing the Tôhoku
paper.
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of equivalent monomorphisms: the chosen monomorphisms will be called the
subobjects of A. Thus, a subobject of A is not simply an object of C, but an
object B endowed with a monomorphism u : B → A. [ . . . ] The relation of
surpassing defines an ordering relation (and not solely a preordering) on the
class of subobjects of A284 [p.123].

The possibility of factorization again is a purely categorial thing285. The motiva-
tion to introduce the equivalence relation is obviously to obtain an order relation
through the identification of u, u′ with u ≤ u′ and u′ ≤ u (forcing of antisymme-
try).

What is less categorial, however, is the use of the choice operator τ286. The
principal motivations for the use of this operator as well as those for the use of
Hom-sets will become clear in analyzing next an infinitary construction:

Let A ∈ C, and let (ui)i∈I be a nonvoid family of morphisms ui : A → Ai.
Then for every B ∈ C the functions v → uiv from Hom(B, A) to Hom(B, Ai)
define a natural function

Hom(B, A) →
Y
i∈I

Hom(B, Ai).

One says that the ui define a representation of A as a direct product of the
Ai if for every B the preceding function is bijective287 [p.123].

284“Considérons deux monomorphismes u : B → A et u′ : B′ → A, on dit que u′ majore ou
contient u et on écrit u ≤ u′, si on peut factoriser u en u′v, où v est un morphisme de B dans
B′ [ . . . ] On dira que deux monomorphismes u, u′ sont équivalents si chacun majore l’autre,
alors les morphismes correspondants B → B′ et B′ → B sont inverses l’un de l’autre. [ . . . ]
Choisissons (par exemple au moyen du symbole à tout faire τ de Hilbert) un monomorphisme
dans toute classe de monomorphismes équivalents : les monomorphismes choisis seront appelés
les sous-trucs de A. Ainsi, un sous-truc de A est, non un simple objet de C, mais un objet B
muni d’un monomorphisme u : B → A. [ . . . ] La relation de la majoration définit une relation
d’ordre (et non seulement de préordre) sur la classe des sous-trucs de A”.
285By the way, the passage “in this case the corresponding morphisms B → B′ and B′ → B

are inverse one to another” is not part of the definition of the equivalence relation, but an
observation, because “for both of them, one surpasses the other” means u = u′v and u′ = uv′,
hence u = uv′v and u′ = u′vv′, and since u, u′ are both mono, we have also v′v = IdB and
vv′ = IdB′ .
286Grothendieck’s use of the symbol �τ� deserves a remark. Hilbert and Bernays wrote �ε� for

the choice operator, see [Hilbert and Bernays 1970, vol. II p. 12]; Bourbaki’s choice of �τ� in place
of �ε� is made in La Tribu 26 (1951.3) p.4 “τ [ . . . ] remplacera ε pour raisons typographiques” .
Here again, one feels that Grothendieck prepared the text partly as a Bourbaki manuscript; in
[Krömer 2006b], also the Bourbaki discussion concerning the extension of the operator to proper
classes in the context of set-theoretical foundation of CT is reconstructed.
287“Soient A ∈ C, et soit (ui)i∈I une famille non vide de morphismes ui : A → Ai. Alors

pour tout B ∈ C, les applications v → uiv de Hom(B, A) dans Hom(B, Ai) définissent une
application naturelle

Hom(B, A) →
Y

i∈I

Hom(B, Ai)

On dit que les ui définissent une représentation de A comme produit direct des Ai, si quel que
soit B, l’application précédente est bijective”.



146 Chapter 3. Category theory in Homological Algebra

Bijective is meant here288 in the set-theoretical sense since one has to deal with
une application (i.e., a function—and not a morphisme). Moreover, the charac-
terization of the product is really set-theoretical and not categorial. The product
is not characterized by equations between (compositions of) morphisms; rather,
essential use is made of the assumption that the Hom-collections are sets whose
set-theoretical cartesian product is defined. However, the (now common) charac-
terization in diagram language is immediately noted as a corollary; the direct sum
is defined dually.

Now—and this is crucial for my interpretation—, Grothendieck again applies
τ to choose “the” direct product among the various isomorphic representations.
Such a choice would not be necessary in CT alone where one could not ask more
than that a characterization is unique up to isomorphism. But if no representa-
tive is picked out, it might be difficult to make the product again part of a new
construction—and this not only for the trivial reason that it would not be an ob-
ject but a class of isomorphic objects (this would not be a reason in CT since CT
cannot even distinguish isomorphic objects). Grothendieck’s reason seems rather
to be that while such classes might be proper and hence prohibited from being
elements of new sets in usual set theory, the chosen representative will be allowed
to be an element of a new set.

I will come back in later sections on the two main points, namely that on the
one hand CT cannot express the difference between isomorphic objects, while on
the other hand set-theoretically the behaviour of one such object and the behaviour
of the totality of such objects can be quite different289. At the present stage of
our analysis, we should note that Grothendieck made a lucky strike precisely
because he was ready with an infinitary CT in order to achieve something instead
of stagnating with a finitary one. This becomes pretty clear when comparing
Grothendieck’s definitions to Buchsbaum’s. There are actually two observations:

• Buchsbaum uses from the beginning the additive-abelian structure of exact
categories in full extent; hence, he does not show what precisely could actually
be defined in a more general framework.

• Buchsbaum avoids infinitary constructions (i.e., he does not allow his con-
structions to depend on set theory290.)

For example, Buchsbaum defines mono and epi via exact sequences, hence char-
288The term “bijectif” also has a categorial use in [1957]; in these cases, the term denotes the

(categorial) property of an arrow to be mono and epi simultaneously.
289See sections 6.1 and 5.3.2.
290It is interesting that Buchsbaum never makes explicit whether the groups Hom(A, B) are

meant to be sets or not. One might argue that a group is automatically a set (but proper classes
seem to admit equally well of, e.g., operations like forming ordered pairs of their elements, so
there seems to be no clear reason to impose such a restriction; see Mitchell’s point of view, as
discussed in section 6.4.1). At least, Buchsbaum referred repeatedly to [Mac Lane 1950] where
the assumption is made throughout; hence he made the same assumption probably at least
implicitly. However, he never seems, contrary to Grothendieck, to make any explicit use of the
assumption.
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acterizes these concepts on the level of abelian CT and not on the level of general
CT. Moreover, he has apparently some struggle with the concepts of infinite direct
product, resp. infinite direct sum291:

As yet, we have found no efficient way of defining infinite direct sums and
products in an arbitrary exact category A.

Definition. A family of maps

Aα
lα→ A

pα→ Aα

where α belongs to a finite set of indices, is a direct sum representation of A
if

pαlα = eAα , pβlα = 0 for β �= α,
X

α

lαpα = eA.

[Buchsbaum 1955, 21].

This is simply an extension to n summands of the usual characterization for two
summands. Buchsbaum tries apparently to express exclusively in arrow language
(more precisely, making use exclusively of the two operations of arrow composition
at one’s disposal in the abelian case) that certain arrows behave like the embed-
dings and projections of a direct sum. This procedure is obviously not feasible
in the case of an infinite index set (compare the third equation). Moreover, the
additive structure of the category enters in an essential way, while Grothendieck
can give his definition already in the case of general categories.

3.3.4.2 “Diagram schemes” and Open(X)op

A certain method of construction of new categories from given categories is im-
portant for Grothendieck’s argumentation; he speaks about catégories définies par
des schémas de diagrammes; p.130ff). A diagram scheme is (in the terminology of
graph theory) a (finite or infinite) directed multigraph with loops; the vertices and
edges of this graph can be attributed appropriately to objects and arrows of a given
category C, thus distinguishing in C the diagrams corresponding to this scheme;
the totality of these diagrams can be regarded as a new category CS (resembling
formally a category of functors). Still more generally, one can assume additional
relations de commutation and obtains a subcategory CΣ of CS . According to
proposition 1.6.1 of the Tôhoku paper (asserted but not proved by Grothendieck),
the relevant properties are inherited by CΣ from an additive category C: with
C, also CΣ is abelian; similarly for AB 3 to AB 6. Grothendieck points out that
certain examples of categories can be regarded as such a CΣ—among others, this
is the case for presheaves (the system of open sets of the space is regarded as a dia-
gram scheme; p.133). Moreover, proposition 1.9.2 explains how one can construct
a generator for CΣ from one for C; here, the proof is sketched rapidly, starting
with the remark “verification is immediate (la vérification est immédiate)” (p.135).
291[Grothendieck 1957, 127] refers to [Buchsbaum 1955] for details on the theory of abelian

categories without arbitrary direct products and sums.
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Grothendieck’s theory of catégories définies par schémas de diagrammes has
some resemblance to Kan’s general limit concept292. However, Grothendieck is
not interested in the distinction of constructions with a certain type of univer-
sal property in the technical sense of the term; he rather stresses that certain
properties (which, since they imply the existence of enough injective objects, are
relevant to his overall purpose of defining sheaf cohomology by derived functors)
are preserved under the construction of new categories from given categories along
a certain scheme. This might be among the things he thought of when stressing
that the right method in homological algebra is to change the category all the time
〈#12 p.122〉 (he certainly thought of the concept of equivalence of categories, too;
for the role of this concept, see the next section).

So we encounter finally the reason (put off until later in 3.3.3.1) why Grothen-
dieck uses just these concepts in his functorial sheaf definition—he can now use
these results about the conservative nature of some properties in his proof of the
existence of enough injectives. Nevertheless, such a functorial sheaf definition looks
tedious, compared to the use of Open(X)op as domain category of the presheaves;
however, we will see in 4.1.2.2 that Grothendieck later had indeed reasons to
recognize this domain category as a choice among various possible candidates, all
of which are perfectly motivated and not artificial at all, i.e., reasons to focus
on Open(X)op, to no longer use it in an intuitive manner, in the terminology of
chapter 1. Grothendieck will then be led to introduce the general concept of a
site, denoting a type of categories admissible as domain categories of presheaves.
It is perfectly possible that an advantage of working with schémas de diagrammes
consists in the situation that one has a cohomology theory for sheaves defined on
such a site precisely because a site falls under the concept of catégorie définie par
un schéma de diagrammes. I did not check this hypothesis; anyway, Grothendieck
is not supposed to have yet had in mind this generalization during the writing of
the Tôhoku paper.

3.3.4.3 Equivalence of categories and its role in the proof that there are enough
injective sheaves

Grothendieck introduces the concept of equivalence of two categories as follows:

An equivalence of a category C and a category C′ is a system (F, G, φ, ψ)
of covariant functors

F : C → C′ G : C′ → C

and functorial homomorphisms

φ : 1C → GF ψ : 1C′ → FG

292See 2.5.2.
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[ . . . ] such that for every A ∈ C, A′ ∈ C′ the compositions

F (A)
F (φ(A))−−−−−→ FGF (A)

ψ−1(F (A))−−−−−−−→ F (A)

G(A′)
G(ψ(A′))−−−−−−→ GFG(A′)

φ−1(G(A′))−−−−−−−−→ G(A′)

are the identity on F (A) resp. G(A′). [ . . . ] Two categories are called equiva-
lent if there exists an equivalence between these categories. In the language,
one quite often does not distinguish between them293 [Grothendieck 1957,
125].

(Erroneously, Grothendieck writes A in place of A′ in the labels of the arrows of
the second sequence.)

Remark. This definition contains something more than just the concept of
equivalence of two categories, namely the defining equation of an adjunction of
functors294. On the other hand, it should be noted that Grothendieck’s presen-
tation of the concept of equivalence of categories is not satisfactory295, since it is
not said clearly that φ and ψ are supposed to be isomorphisms (and not simply
functorial morphisms). I think that the former is nevertheless precisely what he
wanted to say. Admittedly, he speaks about “homomorphismes de foncteurs”296 φ
and ψ, but he treats them as if they were invertible, and he later speaks explicitly
about the “isomorphismes” φ(A) and φ(B) induced by φ. Moreover: if he had
really tried to define what later became called adjunction instead of what later
became called equivalence, then he couldn’t say: “in the language, one quite often
does not distinguish between [two equivalent categories]”—for there are adjunctions
293“Une équivalence d’une catégorie C avec une catégorie C′ est un système (F, G, φ, ψ) formé

de foncteurs covariants :
F : C → C′ G : C′ → C

et d’homomorphismes de foncteurs

φ : 1C → GF ψ : 1C′ → FG

[ . . . ] tels que pour tout A ∈ C, A′ ∈ C′, les composés

F (A)
F (φ(A))−−−−−−→ FGF (A)

ψ−1(F (A))−−−−−−−−→ F (A)

G(A′)
G(ψ(A′))−−−−−−−→ GFG(A′)

φ−1(G(A′))−−−−−−−−→ G(A′)

soient l’identité dans F (A) resp. G(A′). [ . . . ] Deux catégories sont dites équivalentes s’il existe
une équivalence entre ces catégories. On se permet alors couramment, dans le langage, de ne
pas distinguer entre l’une et l’autre”.
294Jean-Pierre Marquis, who pointed out this fact to me, told me that he always earned as-

tonishment when telling category theorists this observation. Usually, it is exclusively Kan who
is credited with the concept of adjointness, and it seems that the Tôhoku paper has not in all
respects been read with complete attention. For example, I show in 6.4.2.1 that Mac Lane refers
to the Tôhoku paper just very loosely in his discussion of the set-theoretical foundation of CT.
295He concedes this later in SGA 1, exposé VI p.3: “la notion d’équivalence de catégories [ . . . ]

n’est pas exposée de façon satisfaisante dans [[Grothendieck 1957]]”.
296Incidentally, it is remarkable that he speaks here about “homomorphismes de foncteurs”

while having introduced another terminology for the same thing just some lines before (namely
“morphismes fonctoriels”, p.124).
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between categories which are by no means equivalent in the now current sense and
which are obviously to be distinguished (for example Set and Grp). One would
have to suppose then that Grothendieck did not realize these facts, and this seems
to be quite a bold conjecture, after all.

Thus, what Grothendieck really does where it looks as if he defined the con-
cept of adjunction, is the following: he defines the concept of equivalence as a
special case of what will be called adjunction later on; ψ (or more precisely ψ−1)
and φ will later be called “units of adjunction”—these however not being neces-
sarily isomorphisms in the general case297. In principle, the equations concerning
φ and ψ (written as sequences) should not be part of the definition itself, because
they are automatically valid for isomorphisms φ and ψ (hence a corollary of the
now usual definition of equivalence which would be complete just before the “such
that”). This is not hard to show; see, for instance, an exercise in [Barr and Wells
1985, 59]. It might be that Grothendieck did not observe this and that he rather
erroneously thought to enlarge his definition by an additional feature. Anyway it
would be important to find out whether he made any use of this property, but I
do not have the impression that he did.

The fact that an equivalence is in particular an adjunction was explicitly
recognized by [Gabriel 1962, 341] (end of remark).

There seems to be only one (however central) use made by Grothendieck of
the concept of equivalence of categories, namely the equivalence of the categories
E/X and Shv(X) (see 3.3.3.1). Since the proof of this equivalence and its use in
other proofs are mostly left to the reader (i.e., are not worked out in the Tôhoku
paper), it is hard to say what role the contained adjunction actually plays298. The
precise reason to change between these two categories is the following. The Cartan
seminar seems to contain essential parts of the demonstration that E/X is abelian;
Grothendieck points out a problem with cokernels. Anyway, the possibility of
a change between Shv(X) and E/X is essential in the proof of the existence
of enough injective sheaves, due to the following observation: “the conditions of
theorem [1.10.1] are stable under the passage to certain categories of diagrams
(see prop. 1.6.1 et 1.9.2) where the existence of enough injective objects is not
always visible with the naked eye”299 (p.137). Hence, one can deduce the fact that
presheaves of abelian groups fulfill AB 5 and have a generator from the fact that
the same is true for the abelian groups themselves—and this latter fact is shown

297The fact that I wrote ψ−1 for one of them should cause no trouble. The units of adjunction
are arrows one of which, let us denote it ψ′, in the present situation corresponds to ψ−1, while
ψ in the general situation does not necessarily exist since ψ′ is not necessarily invertible.
298The equivalence yields another adjunction (a “true” one where the units of adjunction are

just not isomorphisms), namely the adjunction of sheafification and the inclusion functor of the
sheaves into the presheaves. In the setting of [Gelfand and Manin 1996, 114], this adjunction is
used in the proof that sheaves form an abelian category; but this setting is somewhat different
from Grothendieck’s.
299“Les conditions du théorème [1.10.1] sont stables par passage à certaines catégories de dia-

grammes (cf. prop. 1.6.1 et 1.9.2), où l’existence de suffisamment d’objets injectifs n’est pas
toujours visible à l’œil nu”.
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in the Tôhoku paper (the existence of a generator for modules is proved on p.134,
and AB 5 for abelian groups on p.129).

Now, in order to have these results also for sheaves, Grothendieck proceeds
thus (p.155): a family of generators is given directly—hence not by an application
of proposition 1.9.2. But to apply theorem 1.10.1, you do not need a family of
generators, but a generator. You can make the family a generator by applying
proposition 1.9.1 (p.134) hence by taking the direct sum of the famille. But this
direct sum one gets by sheafification after having used AB 3 for presheaves. And
this is the decisive place where the functorial definition of presheaves comes into
play: the fact that one has AB 3 for presheaves comes from the above mentioned
proposition 1.6.1. Recall the wording of Buchsbaum’s statement: he has “found
no efficient way of defining infinite direct sums and products in an arbitrary exact
category” (3.3.4.1). Grothendieck points out a possibility to transfer AB 3 from an
abelian category in which the axiom is valid to another abelian category (“schéma
de diagrammes”), for example from abelian groups to presheaves of abelian groups.
Buchsbaum looked for a “definition” in the sense of a prescription according to
which a direct sum object can be built up from given objects of an exact category. It
could very well be the case that this is not even possible (i.e., that not every abelian
category has arbitrary direct sums etc.); Grothendieck decides consequently to
treat the matter as a supplementary axiom and distinguishes situations where the
construction is indeed possible (he gives sufficient existence conditions).

To sum up, the respective achievements of the two sheaf definitions are the
following:

• the functorial definition allows one to prove that presheaves fulfill AB 3,
which yields a proof that there are enough injective objects;

• the topological definition is already decisive in the very definition of the
functor Γ (and this is the central motivation of the sheaf concept); the proof
that sheaves (and not only presheaves) fulfill AB 3 flows from the case of
presheaves by sheafification (i.e., by a method based on the topological defi-
nition).

It is to be stressed once again that the achievements of CT are by no means
restricted to the “purely categorial” proposition 1.10.1; in the proof of the propo-
sition concerning sheaves, they are needed as well—and they are at one’s disposal
due to the functorial sheaf definition and the categorial equivalence of the two
definitions.

3.3.4.4 Diagram chasing and the full embedding theorem

The transition from categories of modules to abelian categories in general gives
rise not only to the question of which theorems stay valid, but also to the question
of which proof methods stay applicable. The latter question was of importance
in the analysis of Grothendieck’s proofs and proof sketches. Hartshorne gives the
following account of the problem and its various fixes:
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[The] basic results of homological algebra [can be stated] in the context
of an arbitrary abelian category. However, in most books, these results are
proved only for the category of modules over a ring, and proofs are often
done by “diagram chasing”: you pick an element and chase its images and
pre-images through a diagram. [ . . . ] diagram chasing does not make sense in
an arbitrary abelian category [ . . . ]. There are at least three ways to handle
this difficulty. (1) Provide intrinsic proofs for all the results, starting from
the axioms of an abelian category, and without even mentioning an element
[[Freyd 1964]]. Or (2), note that in each of the categories [used in [Hartshorne
1977]], one can in fact carry out proofs by diagram chasing. Or (3), [ . . . ] the
“full embedding theorem” [[Freyd 1964, chapter 7]] states roughly that any
abelian category is equivalent to a subcategory of [the category of abelian
groups]. This implies that any category-theoretic statement [ . . . ] which can
be proved in [the category of abelian groups] (e.g., by diagram-chasing) also
holds in any abelian category [Hartshorne 1977, 203].

The situation is the following: if one does refer solely to the definition of the con-
cept of abelian category, one has no elements of objects at one’s disposal; that is
what Hartshorne has in mind when saying “diagram chasing does not make sense
in an arbitrary abelian category”. According to Freyd’s preface300, this is how
the absence of elements is to be understood (and this absence makes the proofs
“painfully difficult”; [Freyd 1964, 9]). In the general definition of the concept of
abelian category, there is simply no mention made of any elements of the objects
(“we throw away the elements [ . . . ] we will use the words “object” and “map” as
primitives”; ibid. p.4)301. Hence, one has to deal here with a problem concerning
a proof technique; by no means is it claimed that there were concrete abelian cate-
gories with objects having no elements. To the contrary, what the “full embedding
theorem” says is ultimately that in any abelian category, objects “have elements”
(namely the elements of the group which is the value of the object under the em-
bedding; [Lubkin 1960, 410]). That means that it is not at all the achievement
of the Tôhoku paper to have obtained results for an arbitrary abelian category
not achievable by diagram chasing; it is precisely the moral of the full embedding
theorem that there are no such results (since there are no abelian categories not
admitting diagram chasing). Incidentally, Grothendieck’s treatment of the results
impacted by this problem consists to a large extent in the repetition of the claim
that everything goes in a way similar to the one in [Cartan and Eilenberg 1956].
Hence, the full embedding theorem accomplishes an important task in completing
the proofs of the Tôhoku paper.

300Other original contributions to the subject matter are [Lubkin 1960] and [Mitchell 1964]; see
also [Weibel 1999, 816].
301We will see in 4.1.1.4 that the fact that “object” be an undefined predicate in CT (in partic-

ular, that an object is not automatically assumed to be a set) gave rise to even more far-reaching
ideas, like giving the predicate “to have elements” a sense expressible entirely in categorial terms,
and thus deviating from the usual set-theoretical sense, in that there are categories with objects
having no elements in the new sense while having some in the old.
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Freyd’s proof of the full embedding theorem runs as follows: first, the notion
of a representation functor into a category of functors is introduced; then one
considers the category of left exact functors from a small abelian category A to
the category of abelian groups; it is shown that the representation functor embeds
A in the desired manner in this category of functors. One shows further that this
category of functors belongs to a type of categories for which the full embedding
theorem is generally valid, whence the desired embedding by composition. This is
perhaps the first important application of the concept of functor category on the
theoretical level of CT.

We saw in 3.3.4.1 that Buchsbaum stayed finite to be able to argue on the
level of the axioms of an abelian category; the motivation for this might very well
have been to avoid relying on diagram chasing—which would be the consequence of
his account of the difference between what he called concretely defined categories
and some categories obtained by a formal process of dualization (see 3.1.2.2).
Hence, the observation of this difference might have been quite important for the
development of an independent conceptual assembling of CT. Freyd and Mitchell
seem to have continued Buchsbaum’s approach, such that one could speak about
a certain community in category theory different from another community which
Grothendieck might have inaugurated.

3.4 Conclusions

3.4.1 Transformation of the notion of homology theory: the accent
on the abelian variable

The main difference between the homology and cohomology theories in the sense
of Eilenberg and Steenrod and the cohomology theories developed in the Tôhoku
paper is pointed out by Gelfand and Manin:

The break with the axiomatic homology and cohomology theory of Eilen-
berg and Steenrod is in that now an abelian object (a sheaf) rather than a
non-abelian one (a space), serves as a variable argument in a cohomology
theory [Gelfand and Manin 1996, vi].

This shift is of crucial significance for the enterprises investigated in the present
chapter; it will be summed up here in a few lines.

In the perspective of [Eilenberg and Mac Lane 1942a], what was stressed was
not the variation of spaces but of coefficient groups (which is natural in the context
of universal coefficient theorems). In the 1945 paper, however, Eilenberg and Mac
Lane adopt a more theoretical perspective; consequently, they make, after having
evoked the universal coefficient theorem for complexes K and coefficient groups
G (with isomorphisms Qq(K, G) ∼= Ext(Hq+1(K, Z), G), Hq(K, G)/Qq(K, G) ∼=
Hom(Hq(K, Z), G); see 2.2.3 for a complete citation), the following remark:
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Both [ . . . ] isomorphisms [ . . . ] can be interpreted as equivalences of
functors. The naturality of these equivalences with respect to K has been
explicitly verified [[1942a, 815]], while the naturality with respect to G can
be verified without difficulty [1945, 290].

Hence, they recognize already in principle that one deals here with two variables
having equal rights, at least as far as the question of naturality is concerned.
However, the naturality of the isomorphisms concerning the first, “non-abelian”
variable was the only one important for the results of their 1942 paper, because
they were studying the stability of the isomorphisms under the transition from an
approximating complex to a refinement (compare section 2.3.3).

The shift of accent from the non-abelian to the abelian variable is expressed
in the transformation of the long exact cohomology sequence. A long exact co-
homology sequence for sheaf cohomology in the style of Eilenberg and Steenrod
would have subsequences of the form

Hn(X, F ) → Hn(A, F ) → Hn(X \ A, F ) → Hn+1(X, F ) · · ·

(the sheaf F is used as “local coefficient system”; what is varied in the sequence
are the topological spaces X ⊃ A, X \ A). The long exact cohomology sequence
for sheaf cohomology in the style of Cartan and Grothendieck instead has subse-
quences of the form

Hn(X, F ′) → Hn(X, F ) → Hn(X, F ′′) → Hn+1(X, F ′) · · ·

where 0 → F ′ → F → F ′′ → 0 is an exact sequence of sheaves. (It is not entirely
accurate to write F throughout in the first sequence since the sheaves are defined
on different spaces in the various terms. Rather, the crucial difference between the
two cases is that in the first, different spaces are considered while in the second,
the space stays put once and for all.) The exactness of 0 → F ′ → F → F ′′ → 0
is related to the “old” situation in the following way: the situation X ⊃ A, X \ A
gives at first a corresponding short exact chain complex—where the groups of this
complex are originally groups of chains in the geometrical sense302. This short
exact sequence gives rise then to the long exact cohomology sequence. In [Eilenberg
and Steenrod 1952, 11], no such short exact sequence is written down, only the
situation X ⊃ A, X\A, because the exact sequence of complexes represents only an
intermediate step not visible in the axiomatization, but only in the existence proofs
(compare theorem 5.9 on p.86 of the book in the simplicial case, for instance).

At the same time, the accent on the abelian variable comes from theories like
group cohomology where no non-abelian variable is present. To this extent, the
comparison of non-abelian and abelian variable corresponds to the comparison
of algebraic topology and homological algebra. For example, Leray’s spectral

302This seems to be the context where the concept of exact sequence was first employed; see
[Kelley and Pitcher 1947, 687]. The history of the concept of chain complexes is discussed in
section 5.1.2. [Dold 1980, 32] explores the situation in the case of the singular theory.
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sequence is a tool for algebraic topology (cohomology of fibre spaces); similarly
for Borel’s classifying space [Borel 1953, 166]. The above-mentioned equivalence of
categories installs the connection (allows for the stress on the abelian variable by
virtue of the definability of Γ). ΓΦ(F ) is Grothendieck’s abbreviation for ΓΦ(X, F )
(SC 50/51 (15-03), [Grothendieck 1957, 157]); i.e., the non-abelian parameter is
left out of the notation.

3.4.2 Two mostly unrelated communities?

One can conclude from the evidence compiled in the present chapter that the con-
tributions to homological algebra and CT achieved in the USA on the one hand, in
France on the other hand, were in the beginning quite independent of each other.
This is easily explained for the period just after the war; for example, Leray was
a prisoner of war in Austria until the end of the war and was certainly not able
to follow the most recent developments in America around then; similarly, Samuel
started to investigate the concept of “universal problems” around 1945 apparently
without knowing about CT (the outcome was his paper [Samuel 1948]). Concern-
ing later years, external difficulties of communication cannot serve any longer as
an explanation; to the contrary, since Eilenberg became a member of Bourbaki
and started in particular a close collaboration with Chevalley and Cartan, at least
one direct connection was established and cultivated. At this stage, the separation
of the communities seems rather to be due to diverging main interests303.

Alex Heller, one of Eilenberg’s PhD students, stayed at the IHP in Paris early
in 1958; in a letter dated March 4, 1958 and contained in Eilenberg’s records, he
writes: “Everybody does algebraic geometry here, topology is unheard of [ . . . ] I
wonder what sort of market there would be for abstract homological algebra here”.
Such a question may sound strange given that [Grothendieck 1957] appeared the
year before; however, it is indeed true that Grothendieck was interested in ho-
mological algebra only from the viewpoint of algebraic geometry. When speaking
about “abstract homological algebra”, Heller thinks certainly of the “abstract”
approach to abelian (exact) categories initiated by Buchsbaum (see above) and
culminating later in Freyd’s and Mitchell’s work as well as in generalizations of
the concept of abelian category by himself and by Buchsbaum, in particular in
attempts to study the derivation of functors in categories without enough injec-
tives304. One might speak of a difference of style between France and the USA.
Here is one more example: much like Buchsbaum, Mitchell in [1965] is, compared
to Grothendieck, less interested in the treatment of constructions as sets and more
interested in metatheorems and formal aspects.

Eilenberg himself apparently tried in vain to obtain preprints of [Grothendieck

303There were other contacts, for example Grothendieck’s Kansas travel. However, Grothen-
dieck was not invited to the USA by the CT-community (which is not astonishing since he hadn’t
started working on CT by then) but, as Serre suggests, by N.Aronszajn because of his work on
topological vector spaces (see 3.3.1.2).
304[Buchsbaum 1959;1960], [Heller 1958], [Heller and Rowe 1962]. See also 6.4.2.2.
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1957] and [Godement 1958]. This is indicated by some letters contained in his
records: Serre wrote him July 11, 1957 without holding out great hopes in the
case of the Tôhoku paper; Godement apologized in a letter dated September 7,
1957 that he was not able to send Eilenberg a proofreading copy of his book since
he had himself only one such copy around that time.

Grothendieck exhibited little interest for the work of the American commu-
nity (see 3.3.2.1). [Gabriel 1962] mentions Buchsbaum in the introduction, but
not even in the bibliography; he probably just took over the name from the intro-
duction to [Grothendieck 1957] but did not himself read Buchsbaum’s paper.

For a study of the relationship of the communities, also the reviews of respec-
tive contributions in Mathematical reviews are interesting. First of all, we should
look at to which referees the contributions are attributed. Work by Eilenberg or
Mac Lane is very often reviewed by Cartan or Chevalley, while Eilenberg reviewed
contributions by Leray, and Mac Lane’s coworker O.F.G. Schilling reviewed con-
tributions by André Weil, to name just a few. If my hypothesis concerning the
existence of two communities is correct, these data might suggest that there was
an effort made to avoid having reviews written by referees belonging to the au-
thor’s own community, perhaps to reach a greater objective distance. Another
reason might be language: one wanted to have English reviews of French works
(and, at least in the period we are concerned with, vice versa). Admittedly, all
these considerations of mine so far are just suggestive hypotheses and would need
a broader statistical underpinning to be of any value.

Now to the content of the reviews. When reviewing the work of the other
community, Eilenberg and Mac Lane did not exhibit great missionary fervour;
they let pass by numerous occasions to point out latent connections of this work
to CT305, although such pointers would have been appropriate both to make CT
better known and to bring the two communities closer together. Eilenberg’s review
of Leray’s work (see 3.2.1.2) is such a case, but not the only one: Mac Lane, in
his review of [Samuel 1948] (MR 9,605f), does not mention the similarity between
Samuel’s considerations and methods of category theory. Likewise, in his review of
the first edition of Bourbaki’s Multilinear Algebra [Bourbaki 1948a] (MR 10,231d),
the appendix on universal problems is only mentioned marginally as follows: “Ap-
pendices treat [ . . . ] the ‘universal mapping’ question”306. Eilenberg does not even
point out the latent use of categorial concepts in his review of Steenrod [1943] (a
work by a member of his own community, after all)307. One could remark here

305The fact that they were commissioned with these reviews indicates that these latent connec-
tions were clearly felt.
306I plan to discuss the historical relation between CT and Samuel’s approach to “universal

problems” in a separate publication.
307The data of Steenrod’s “systems of local groups” are a group Gx for each point x of the

space and an isomorphism between the groups Gx → Gy for each class of paths from x to y
(p.611). Hence, Steenrod considers implicitly functors defined on the fundamental groupoid;
see also [Spanier 1966, 58]. It is perhaps anachronistic to wait for an explicit mention of this
observation by Steenrod or Eilenberg at that time; at least, Eilenberg and Mac Lane had already
developed the concepts of functor and category by then, and Eilenberg could easily have said
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that the referee is supposed to resist the temptation to use the review as a plat-
form for advertising his own work, in particular that he should point to relations
between his own work and the work under review only where this is necessary to
establish priority etc. On the other hand, this rule is far from being systemati-
cally respected, so the fact that it is in the present cases calls perhaps for some
explanation. Probably, Eilenberg and Mac Lane still were under the impression
of the quite mixed echo of their paper (see 2.3.2.1) and tended not to pull atten-
tion towards it. In this context, one should also mention Buchsbaum’s review of
the Tôhoku paper (see the beginning of section 3.2, especially the corresponding
discussion contained in n.183).

On the other hand, there are contexts in which Eilenberg and especially Mac
Lane did try to advertise CT in France. Mac Lane repeatedly tells about his vain
efforts to “categorize Bourbaki”, i.e., to influence Bourbaki to adopt categorial
language in the Eléments (see [Krömer 2006b]). In one of these accounts, he says
“perhaps the explanation for [Bourbaki’s] resistance is the hard fact that categories
were not made in France” [1996, 132]. (It is worth noting that he said this at
a conference held 1992 in France.) In his own writing on the history of CT, on
the other hand, he gives much less space to Grothendieck’s contributions than I
do in the present book (see [Mac Lane 1988a, 341]) and in turn provides much
more detail about the American contributions than I do. This might be due to
the fact that after all he was member (and in some sense head) of the American
community, and since his writing largely consists of personal reminiscences, it is
not astonishing that the contributions of those with whom he was in closer contact
are represented more fully (this is, or can be, a disadvantage of the historiography
of the protagonists). On the other hand, this observation of a slight preference in
his historical work in the last analysis amounts to further evidence for my claim
of the existence of two not entirely separated but distinct communities. All told,
when I decided to represent Grothendieck’s contributions more fully than those
of Buchsbaum, Kan308, Heller, Freyd, Mitchell etc. (which for some readers might
constitute at least as much of a one-sidedness as Mac Lane’s writing), I had the
motivation to restore a kind of equilibrium in the secondary literature as a whole,
not to diminish the achievements of these authors. Moreover, the above-mentioned
difference of style amounts to what I would describe in a somewhat simplifying
manner as a greater orientation towards applications in the French works (pace
Bourbaki), and in my philosophical analysis, I am stressing this aspect more than
the independent development of an abstract theory.

something like he will soon publish together with Mac Lane a general theory which encompasses
Steenrod’s situation as a special case.
308The reception of Kan’s work on adjoints in France will be discussed in section 5.2.3.3.
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3.4.3 Judgements concerning the relevance of Grothendieck’s
contribution

The historiography of the protagonists stresses repeatedly the outstanding impor-
tance of Grothendieck’s work, in particular of his Tôhoku paper, for the historical
development of CT. I reproduce three such statements:

[The] first papers on categories had no immediate sequels, because for
this period they provided just a language. The notion of category theory as
a subject of study in its own right appears only in the third phase of the
abstract algebra movement[309]. [Mac Lane 1981, 24]

[Grothendieck and Buchsbaum extended] a mathematical theory [the ho-
mological algebra of [Cartan and Eilenberg 1956]] beyond its original domain
and made [it] available in new contexts which turned out to be very signifi-
cant.

Category theory then began to develop as an autonomous discipline. Some
mathematicians [ . . . ] came to describe themselves as category-theorists or
categorists. Conferences were devoted to category theory [ . . . ] [Hilton 1981,
81]

[[Grothendieck 1957]] demonstrated that categories could be a tool for
actually doing mathematics and from then on the development was rapid
[Barr and Wells 1985, 62].

These three quotations contain some interesting statements about the history of
CT and about how the theory changed with Grothendieck’s contributions. Some
of these statements are investigated in the next sections: in 3.4.3.1, I discuss
the claim that Grothendieck’s innovations were of particular importance for the
development of CT into an independent research discipline (Mac Lane, Hilton);
in 3.4.3.2, the distinction of “language” (Mac Lane) vs. “tool” (Barr & Wells) is
explored.

3.4.3.1 Was Grothendieck the founder of category theory as an independent field
of research?

It was apparently not Grothendieck’s aim to found an independent research dis-
cipline “category theory”; he was looking for conceptual tools appropriate for the
solution of given problems, or for concepts appropriate for the conceptual renewal
of another discipline (algebraic geometry; see also chapter 4). The fact that the
independent research discipline emerged nevertheless may at most be described
as an unintended byproduct of Grothendieck’s activity (but this would certainly
do injustice to other people active in the field). Hence, the question arises, what
309i.e., the period “1957–1974, [a period] under the influence of Grothendieck, algebraic geom-

etry, and category theory” (ibid. p.4).
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is the function of relating this discipline’s emergence with Grothendieck’s work?
Since the connection between the field of research and the researcher turns out to
be less close than claimed, it is a natural hypothesis that the claim was made to
acquire additional relevance for one of the two, inherited from the other. Thus, in
the present case there are two possible functions of such utterings: to stress the
relevance of Grothendieck’s work, or to stress the relevance of CT as an indepen-
dent research discipline. The consensus is probably larger in the first case, so that
we may conclude that what is aimed at is to acquire additional relevance of CT
as an independent research discipline.

3.4.3.2 From a language to a tool?

Barr and Wells, resp. Mac Lane, speak about a tool for actually doing mathematics,
resp. an explicit tool for research; such expressions are current in the context
of CT. Concerning another field of categorial research, [Corry 1996, 381] says:
“Ehresmann’s theory was not just a language allowing a better reformulation of
existing results, but also an effective research tool leading to the discovery and proof
of new results”. An opposition is made up here between language as language for
the expression of well-known matters and tool as a means of production of new
matters310. Mac Lane accentuates in different places the idea that CT had at
first been only such a “language”311. More precisely, CT was not seen simply as
a language, but, as [Eckmann 1998, 33] puts it, as a precise language (langage
précis). In view of the reflections of section 2.4.1.2 concerning the meaning of
the term “precise”, the following interpretation of this talk about langage précis is
suggested: the progress achieved by a use of CT as a language concerns merely
the communication function (one has now means to express this or that precisely)
while the mathematical objects used exclusively as language do not penetrate onto
the level of independent signification.

In the case of Grothendieck, the opposition language-tool concerns the dif-
ference between the expressive and the deductive aspect of the linguistic frame-
work. Before Grothendieck, categorial concepts served mostly as a descriptive-
organizational linguistic framework; in 2.4.2, we saw this for [Eilenberg and Steen-
rod 1952]; similarly, [Cartan and Eilenberg 1956, vi] say “to facilitate the discussion
of this behaviour [of tensor product in relation to monomorphisms, submodules,
quotient modules etc.] we adopt diagrammatic methods”. Grothendieck, however,
does not merely aim at a description of the analogie formelle—but at an ex-
ploitation of it 〈#6 p.104〉; the deductive potential of the concepts is exploited by

310[Krömer 2001] contains some reflections about the use of the word “tool” by mathematicians.
311“Initially, categories were used chiefly as a language, notably and effectively in the Eilenberg–

Steenrod axioms for homology and cohomology theories” [1971b, 29f]; similarly [1989, 3]. The
German title of [1971b] “Kategorien. Begriffssprache und mathematische Theorie” contains both
aspects. (It is reasonable to suppose that the German title, being so remote from the original
one, was chosen at least after consultation of Mac Lane, if not by himself. While the original
title obviously is inspired by [Bourbaki 1949], the German title could be inspired by Frege’s
“Begriffsschrift” .)
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the use of deeper results such as for example the one establishing that if certain
categories have certain properties, then certain other categories obtained from
these categories by certain construction processes have these properties as well.
Grothendieck gives an example for this investigation of the deductive potential of
CT when observing the possibilities of the allegedly artificial concept of injective
object (see 3.3.3.3). For the formulation of known results, this concept was not
urgently needed in general, but it was so for the working out of new results.

How to give an account of these observations from the perspective of philo-
sophical analysis? At first glance, one might think of the situation as a matter of
eliminability: in the first case, CT is in principle eliminable, while in the second it
is not. However, this is actually a wrong impression since eliminable parts of the
language are neutral not only as far as the deductive potential is concerned, but
as well as far as the expressive potential is concerned. In reality, the two cases are
not separated by what can in principle be done with categories (trivially, this does
not change during the transition to Grothendieck’s work), but by what is actually
done with them. The question is basically a historical one. Systematically, CT
is essentially the same before as afterwards; this means simply that Grothendieck
defined the basic concepts essentially in the same way as did Eilenberg and Mac
Lane. What changes is the use of these basic concepts. While before, talk about
categories was mostly a means of expression for facts established on another level,
categories in Grothendieck’s work become to a larger extent themselves objects of
study and starting point of constructions. The “systematic” perspective struggles
hard to accomplish its task of epistemological analysis here, for the observation
that the things before and afterwards are “in principle” the same rather obstructs
than inspires the analysis of the undeniable shift in the ways of access to the “same”
objects. It is true, this observation is a necessary prerequisite of the debate: if
the things were not identifiable from one stage to another, there would be no
point of comparison of the different stages. But the observation explains nothing.
The philosophical question concerning the conditions imposed on the conceptual
framework under which the respective insights were achieved cannot be answered
by simply saying “under the same conditions”—something must have changed.

Now, one can also formulate the philosophical question as follows: Why is
it just the deductive potential of category theory (and of no different conceptual
framework) that is investigated? The situation at hand exemplifies CT, but it
exemplifies also other frameworks. I am tempted to say (as I did already perhaps
too many times before): well, that is technical common sense. But this answer
seems merely to postpone the problem, for one can ask now: why precisely this
common sense and no different one? I hope to bring together in the following
chapters enough elements for an answer to this question.



Chapter 4

Category theory in Algebraic
Geometry

In the sequel to his work on sheaf cohomology, Grothendieck in the period 1958–
1970 undertakes a complete renewal of the conceptual bases of algebraic geom-
etry. CT intervenes at every stage of this conceptual work, for instance in the
introducion of the fundamental concepts of scheme and topos and in important
characteristics of Grothendieck’s methodology (descent, relativization). All these
innovations are tested, for instance, in the case of the so-called Weil conjectures,
but in this case, Grothendieck’s approach yielded only partial results.

I do not attempt here to present an exhaustive analysis of the role of cate-
gory theory in Grothendieck’s conceptual program for algebraic geometry, because
already the corpus of mathematical publication concerned is perhaps unique in
size and complexity of content312. Despite going, as in the preceding chapters,
into some mathematical detail, I skipped many points of importance, because the
efforts of notation, terminology and explanation of the preliminaries would be
enormous and probably disproportional. For the same reason, the reader in this
chapter is confronted with even more unexplained mathematical terms than in
the preceding ones. I pick out only a few of the various conceptual innovations of
Grothendieck’s related to CT; what I hope to achieve is a sketch for a historical-
philosophical analysis presented for a few and still to be carried out for many
further examples.

Also, I was obliged to rely to a larger degree than in the preceding chapters
on the secondary (and the textbook) literature and on personal communication313

as far as understanding and interpretation of the mathematics involved is con-
cerned. To learn Grothendieck’s algebraic geometry from the original sources is a
work not achieveable in the framework of a PhD study with a much broader ori-

312A rather complete bibliographical overview is given in [Gray 1979], in particular on p.40f.
313I am very indebted to Ernst-Ulrich Gekeler and Norbert Schappacher, in particular.
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entation. I hope that the damage caused by this restriction of attention is limited,
since I am principally interested in the underlying motivations of the conceptual
developments, and these may perhaps be hoped to be more explicitly indicated
in texts of historical or pedagogical orientation than in the massive original texts
written in a style of pure and rigorous mathematical exposition.

The main observation is that Grothendieck in many places articulates a new
paradigm, i.e., posits new objects and new methods for the discipline—and these
positings are determined by a consequent application of category theory. The mo-
tivation of these innovations is the search for what he calls the méthodes vraiment
naturelles of the discipline algebraic geometry (see 4.1.1.2).

One should distinguish here two stages; the first is covered more or less by
the first three SGA volumes. There, genuine geometrical problems are treated
(fundamental group, moduli problem); the significance of CT in this part of the
enterprise comes in particular from the concepts of S-scheme and of representable
functor. At a second stage (from SGA 4 on), the number theoretical perspective,
already touched on in [Grothendieck 1960a] and exemplified by the Weil conjec-
tures, moves to the foreground. By the decision to grant considerable space in my
presentation to the investigation of the Weil conjectures, I do not intend to suggest
that Grothendieck’s activity in algebraic geometry could be understood solely as
oriented towards a proof of these conjectures; this would be quite misleading314.
Grothendieck intended to develop a powerful theory for algebraic geometry, not to
solve a particular problem315—its solution would merely be an expression of the
power of the theory; [Cartier 2000, 21f] “for Grothendieck, the Weil conjectures
are not so interesting in themselves but as a test of solidity of his general concep-
tions (pour Grothendieck, les conjectures de Weil ne sont pas tant intéressantes
en elles-mêmes que comme test de la solidité de ses conceptions générales)”. But
precisely this solidity is what justifies a new paradigm316), and hence, it makes
sense to investigate more closely the test of solidity (and its role in the acceptance
of the paradigm)317.

The existing secondary literature contains much historiography by protago-
nists, however (with the exception of Récoltes et semailles) not written by Grothen-
dieck himself but rather by friends, former students and coworkers. Such publi-
cations in general are intended to be at least as much advertisement for Grothen-

314[McLarty 2006b], while being a very worthwile analysis completing mine in many respects,
actually in my opinion does not do enough to avoid this misleading impression.
315Grothendieck wanted a proof of the Weil conjectures by the method to “put the nut in the

water”; for this comparison contained in Récoltes et semailles, compare [Deligne 1998, 11f] or
[McLarty 2006b].
316Kuhn thinks that paradigms are justified by their success in the treatment of problems

(anomalies).
317Further important achievements of this powerful theory are Faltings’ work on the Mordell

conjecture—[Mac Lane 1988a, 357] “Faltings’ famous solution of the Mordell conjecture made use
of the full panoply of techniques of arithmetic algebraic geometry, including many ideas due to
Grothendieck”—and eventually Wiles’ proof of the Fermat conjecture in consequent application
of the entire Grothendieck program.
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dieck’s mathematics as historical research. This leads to the more general ques-
tion how Grothendieck’s texts are received. A first observation is that there are
no substantial reviews of SGA in Mathematical Reviews but only authors’ reviews
in French which constitute more or less commented tables of content; certainly
the SGA texts were not manageable in the framework of a normal referee duty.
[Dieudonné 1990] and [Deligne 1998] seem to think that some explanations of
Grothendieck’s mathematics are necessary to put the average reader in a posi-
tion to estimate them justly. Grothendieck’s conceptions are apparently thought
of as being not sufficiently motivated for the nonexpert reader. The relations
to the work of his predecessors are loose; in most cases, he rewrites the theories
from scratch. Now, a “good” historical description of conceptual innovations in
mathematics is usually supposed to stress on the one hand the points where the
innovations are related to traditional, well-established mathematical conceptions
and problems, i.e., to stress aspects of continuity in conceptual history. Certainly,
discontinuous aspects are to be stressed as well; however, one should try to avoid
relying uniquely on the “illumination”, the inspiredness of the protagonist.

While Grothendieck’s program is praised at many places318, there are also
critical voices: for example, Abhyankar makes such remarks in [1975], resp. [1976].
Anyway, the divergence in estimations of the relevance of the program is not
decisive here since I do not intend to stress this relevance but only the relative
relevance of CT for the enterprise.

4.1 Conceptual innovations by Grothendieck

4.1.1 From the concept of variety to the concept of scheme

4.1.1.1 Early approaches in work of Chevalley and Serre

Pierre Cartier, in his hommage on Grothendieck, displays the state of conceptual
development before Grothendieck introduced the concept of “scheme”.

André Weil in [[1946]] extended the method of local maps, used by his
master Élie Cartan in differential geometry, to abstract algebraic geometry
(which means, over an arbitrary field) [ . . . ] But Weil’s method was hardly
intrinsic, and Chevalley asked what was invariant in a variety in the sense
of Weil [ . . . ]. The answer, inspired by previous work by Zariski, was sim-
ple and elegant: the scheme of the algebraic variety is the collection of local
rings of the subvarieties inside the field of the rational functions. No explicit
topology, contrary to Serre who at about the same time introduced his alge-
braic varieties using the Zariski topology and sheaves. Both approaches had
advantages, but also limitations:

— base field algebraically closed in Serre’s case ;
— irreducible varieties in Chevalley’s case.

318for example in the texts by Cartier, Deligne, Dieudonné, Hartshorne, Manin and McLarty
used in the sequel.



164 Chapter 4. Category theory in Algebraic Geometry

In both cases, the two fundamental problems of the product of varieties and
of the change of the base field were attacked only in an indirect manner319

[2000, 24f].

Hence, we learn first that already before Grothendieck, Chevalley used the term
“schéma”320, and moreover Cartier’s text suggests a plausible conjecture how
Chevalley came to employ this term: The “scheme of the variety” denotes “what
is invariant in a variety”. However, Chevalley’s concept differs in content from
Grothendieck’s; according to [Dieudonné 1990, 7f], it relates to Weil’s concept of
abstract variety, being more general in some respects and more special in oth-
ers. I have the impression that Chevalley’s enterprise was not very important
for the development of the categorial perspective in algebraic geometry; hence,
I abstain from a detailed investigation here321. Only Grothendieck’s concept322,
leading to an identification of commutative algebra with algebraic geometry323,
employs explicitly categorial concepts, and reaches in this way the solution of the
two fundamental problems324 mentioned by Cartier.

4.1.1.2 Grothendieck’s conception and the undermining of the “sets with
structure” paradigm

In the sequel, Spec(A) denotes the spectrum of a commutative ring A (i.e., the set
of its prime ideals); for the history of the introduction of this concept, see [Cartier
2001, 398]. This spectrum bears a Zariski topology325.
319“André Weil, dans [[1946]], avait étendu à la géométrie algébrique abstraite (c’est-à-dire sur

un corps quelconque [ . . . ]) la méthode de recollement par cartes locales que son maître Élie
Cartan avait utilisée en géométrie différentielle [ . . . ] Mais la méthode de Weil n’était guère
intrinsèque, et Chevalley s’était demandé ce qui était invariant dans une variété au sens de Weil
[ . . . ]. La reponse, inspirée des travaux antérieurs de Zariski, était simple et élégante : le schéma
de la variété algébrique est la collection des anneaux locaux des sous-variétés, à l’intérieur du
corps des fonctions rationnelles. Pas de topologie explicite, à l’opposé de Serre qui à peu près
au même moment introduit ses variétés algébriques au moyen de la topologie de Zariski et des
faisceaux. Chacune des deux approches avait ses avantages, mais aussi ses limitations :

— corps de base algébriquement clos chez Serre ;
— variétés irréductibles chez Chevalley.

Dans les deux cas, les deux problèmes fondamentaux du produit des variétés, et du changement
du corps de base, ne s’abordaient que de manière indirecte”.
320Compare [Chevalley 1955].
321Cartier’s comparison of Serre and Chevalley is explored further in [Cartier 2001, 397f]; in

particular, compare ibid. n.29 for the various intermediate steps until Grothendieck. [McLarty
2006b] discusses partial anticipations of Grothendieck’s ideas by Krull and others.
322This concept was not yet developed at the time when [Grothendieck 1957] was written; on

p.161 of this paper, he speaks about the “schéma de variété” au sens de [Chevalley]; also in the
presentation of [Godement 1958, 124f], the identification of commutative algebra with algebraic
geometry was not yet carried out.
323[McLarty 2006b] “In effect Weil wanted geometry over any commutative ring”.
324These problems are indeed important; for example, it is indispensable in the context of the

Weil conjectures to know what a product is, see Weil’s definition of the Poincaré characteristic
in 4.2.1.
325A comparison of this topology with the Zariski topology for affine varieties can be found, for

instance, in [Kunz 1980, 23].
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Grothendieck gave a talk concerning the transition from variety to scheme
in exposé 182 of the Séminaire Bourbaki [Grothendieck 1959b]. In this talk, he
justifies why the transition to arbitrary commutative rings is “natural”: At first,
an affine variety over k is determined by its affine algebra (the ring of regular
functions defined on k). Classically, such an algebra admittedly has no nilpotent
elements; it is known, however (says Grothendieck), that after translation into
commutative algebra (Grothendieck speaks about a dictionnaire), results can be
obtained already under weaker assumptions: noetherian is enough, and at no place
do nilpotent elements need to be excluded explicitly. The decision to restrict
oneself nevertheless to the classical case constituted, according to Grothendieck,
a “serious obstacle in the way to the development of the truly natural methods in
algebraic geometry”. Hence, the transition is not motivated by some explication
attempts, but by methodological issues.

In the sequel to his talk, Grothendieck develops some conceptual innovations:
On X = Spec(A), one defines first a sheaf of commutative rings OX ; the fibre at
p ∈ X is Ap (localized). With this sheaf, Spec becomes a contravariant functor
from the category of commutative rings to the category of “ringed spaces” (espaces
annelés; the name indicates that OX is a sheaf of rings). (This category will be
discussed in more detail below; what is important here is that its objects have
the form (X,OX)). The morphisms (Spec(A),OSpec(A)) → (Spec(B),OSpec(B))
induced by the functor Spec applied to a ring homomorphism f : B → A are
obtained from the function f ′ : Spec(A) → Spec(B), p �→ f−1(p) and are such
that Of ′(y) → Oy is local (i.e., the inverse image of the maximal ideal is the
maximal ideal.)

Grothendieck introduced next the following concepts:

• affine scheme (schéma affine): ringed space isomorphic to a Spec(A);

• scheme (schéma)326: locally affine ringed space;

• S-scheme (S-schéma): fix a scheme S; the S-schemes are the morphisms of
schemes X → S (here, S plays the role of a base field or base ring or rather
of the base space of a fibration).

Obviously, CT is very important as a linguistic framework for all these concepts.
I shall now point out some key issues involved in the substitution of the

language of schemes for the language of varieties. Not exclusively, but to an
important degree, I rely on the interpretations of [Deligne 1998; Dieudonné 1990;
Gelfand and Manin 1996; Hartshorne 1977].

1) The point of departure is the idea to consider spaces with sheaves (X,OX) in
place of spaces X . This approach was central in [Serre 1955]. The considera-

326In exposé 182, Grothendieck uses the term préschéma here, the name schéma being reserved
for a noetherian préschéma séparé au-dessus de Z (where the diagonal of X ×Z X is closed).
For a schéma in this sense, OX is coherent in the sense of [Serre 1955]. In later texts, schéma
designates what is called préschéma in exposé 182, see for example exposé 190 p.1f [Grothendieck
1960b], and [Dieudonné 1990, 8]. I apply the definitive terminology throughout.
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tion of such objects is of great importance for the theory, in particular because
cohomological methods become thus available. A classical (transcendental)
example is the category of complex analytical manifolds with their structure
sheaf; in such cases, the sheaves are sheaves of complex-valued functions (and
hence sheaves of rings) (Gelfand and Manin, 93). Due to this nice property
of the sections of the structure sheaf, an arrow between two manifolds yields
automatically one between the corresponding structure sheaves (ibid. p.94);
the objects of the form (X,OX) constitute a category.

2) Now, in the Zariski topology on Spec(A), the sections of the structure sheaf
are naturally no such functions; the morphisms between objects of the form
(X,OX) here cannot, as in the classical examples, be derived from the con-
tinuous mappings between the spaces327 (Gelfand and Manin, 95), (Deligne,
12). This problem is fixed by the procedure to define morphisms of spaces
and of sheaves separately under observance of certain compatibility condi-
tions (Gelfand and Manin, 96). This leads to the category of ringed spaces.

3) The Zariski topology, the topology available on Spec(A) for the construc-
tion of the sheaves, poses not only the already discussed problem concerning
the morphisms; moreover, a direct geometrical interpretation is lacking328

(Deligne, 12), and nilpotent elements come into play (Dieudonné, 10). Hence,
we need to explain what are the advantages of the transition to arbitrary
commutative rings which make these disadvantages an acceptable price.

4) There is another idea in a somewhat different direction, namely relativiza-
tion (expressed in the concept of S-scheme): One does not simply con-
sider schemes X (more precisely, (X,OX)), but morphisms of ringed spaces
f : X → S for a fixed S. One obtains the category of S-schemes with objects
of the form (X, f); if (Y, g) is another object (i.e., if g : Y → S is a mor-
phism of ringed spaces), then a morphism of this new category is given by a
morphism of ringed spaces h : X → Y with g ◦ h = f .

X

f ���
��

��
��

h �� Y

g
����

��
��

�

S

327The problem is that the elements of OU for an open set U ⊂ Spec(A) are functions from U
to

‘
p∈U Ap (Hartshorne, 70); hence, neither do these elements (“sections”) on different U have

values in the same ring, nor do they match in an appropriate way for spectra of different rings;
for these reasons, a continuous function between two spectra does not automatically define a
transfer of sections.
328The original geometrical interpretation in the case of varieties was that an ideal of a poly-

nomial ring corresponds to a variety, and that a prime ideal of such a ring corresponds to an
irreducible variety (for example a point). Now, if one considers prime ideals of arbitrary com-
mutative rings instead of prime ideals of polynomial rings, one gives up the intuitive geometrical
meaning of the concept of point.
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At this stage of the conceptual development, the first fruits occur. For one ob-
serves that the category of S-schemes has products (that means, for given objects
(X, f), (Y, g) there is an object (Z, h) that can be regarded as their (fibre) prod-
uct in the sense of CT; one writes X ×S Y ). The proof of this proposition is not
purely categorial (that means, this proof is not done exclusively on the level of slice
categories329 in general), but uses the definition of this particular category (see
hereafter). The part played by CT here is rather conceptual: what one can show,
actually, is that there exist products in the sense of CT; only CT makes avail-
able the appropriate notion of product that can be exemplified in the situation of
S-schemes.

To summarize, Grothendieck’s theory of schemes and S-schemes is not in-
tended to be submitted to a set-theoretical pattern of structural mathematics
where the base operation is to “endow a set with a structure”. In such a perspec-
tive, a product would be obtained by the following procedure: take the objects
intended as the factors of the product, isolate their underlying sets, form the carte-
sian product of these sets (in the sense of set theory) and endow the set obtained
with the structure in question. Now, also an S-scheme has an underlying topo-
logical space (Hartshorne, 74); however, the product of two S-schemes obtained
categorially does not have as its underlying set the product of the sets underlying
the factors and correspondingly does not bear the product topology (ibid. p.91).
The perspective “strip off the structure, form the product set, strip on the struc-
ture again” is artificial here330; the real strategy rather makes use of the fact that
one has to deal with functors. For the key idea of the proof is “first to construct
products for affine schemes and then glue” (ibid. p.87) where the product of two
spectra is shown to be the spectrum of the tensor product of the corresponding
rings (using the equivalence between the category of affine schemes and the dual
category of the category of commutative unitary rings).

The product obtained in the perspective of CT (where a product is an object
for which certain diagrams commute) fulfils moreover the intended task to describe
what is meant by a “base change” (a change of the fixed scheme S) (Dieudonné, 9).
One studies which properties of an arrow f : X → S transfer to an arrow f ′ : X ′ →
S′ with X ′ = X×S S′. Thus, the two fundamental problems mentioned by Cartier
are solved. One studies the behaviour of a given ringed space under such base
changes; its “geometrical” properties are those which are invariant under certain
base changes (Deligne, 13). This amounts to a sound and stable geometrical
interpretation—hence one of the major original disadvantages of Grothendieck’s

329A category having as objects the morphisms of a given category with a fixed codomain is
called a slice category with respect to the given category and the fixed object [Barr and Wells
1985, 3]; beyond the category of S-schemes, also the category of espaces étalés or more generally
of spaces over X for a topological space X (see 3.2.2.2) are of this type.
330Compare this observation with the one made in 3.3.4.1: there, we observed that the use of

sets was artificial from a metamathematical point of view—but Grothendieck did not bother with
such considerations; he was glad to adopt a set-theoretical perspective since he wanted to apply
set-theoretical operations. Here, to the contrary, the artificial character is met with precisely
from the point of view of intended applications, so this time Grothendieck throws away the sets.
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procedure is dismissed331. The remaining disadvantage, the problem of nilpotent
elements, was perhaps mostly a disadvantage from the point of view of the classical
strategies of manipulation, and the capacity of manipulation which Grothendieck
provides in his new setting is at least as great as that which was lost332.

Cartier interprets the transition from Chevalley’s to Grothendieck’s notion
of scheme as a characteristic epistemological shift (“glissement épistémologique
caractéristique”); he says:

For Chevalley [ . . . ] one has to deal with the “scheme” or “skeleton” of an
algebraic variety which itself still is the central object. For Grothendieck, the
“scheme” is the focus, the source of all projections and incarnations333 [2000,
n.8].

This transition is possible, it seems, due to the consequent stressing of the functo-
rial aspects: a scheme is not a set with structure, but a functor from commutative
rings to sets. For in each commutative ring, the equation defining the variety is
meaningful—but such a “realization” would not be more than an incarnation of
the real base object (the functor). A scheme is seen “right” if it is considered as
a functor (Deligne, 14). Actually, such a stress on the functorial aspects is not
restricted to the context of the problem concerning the product but is crucial also
in the definition of certain properties of morphisms between schemes (like sepa-
ratedness or the property that the inverse image of a compact subset is compact)
for which “the usual definitions are not suitable in abstract algebraic geometry, be-
cause the Zariski topology is never Hausdorff, and the underlying topological space
of a scheme does not accurately reflect all of its properties. So instead we will
use definitions which reflect the functorial behaviour of the morphism within the
category of schemes” (Hartshorne, 95f).

The point about schemes is not that varieties could not be seen categori-
ally; certainly they can (Hartshorne, 15, 20). The point is that the problems
with varieties cannot be resolved in a set-theoretical manner. Thus, if schemes
are introduced to resolve these problems, they cannot reasonably be seen set-
theoretically. The categorial perspective of schemes is transferred back to varieties
and solves there conceptual problems which the set perspective was not able to
solve (Hartshorne explains this for the case of the product of varieties; p.22).

The dual equivalence between the category of affine schemes and the category
of commutative unitary rings allows for the transformation of geometrical problems
331However, “geometrical interpretation” is not to be confounded here with “spatial illustration”

or the like!
332In Grothendieck’s next talk at the Séminaire Bourbaki (exposé 190; [Grothendieck 1960b]),

it becomes clear that the existence of nilpotent elements even is useful to a certain degree;
according to Grothendieck, Weil and Cartier spoke in a certain context about two situations
which are at first glance quite different but in the last analysis identical; Grothendieck explains
that Cartier was not able to express this identity, lacking the language of schemes, in particular
in the absence of nilpotent elements.
333“pour Chevalley [ . . . ] il s’agit du “schéma” ou “squelette” d’une variété algébrique, qui reste

l’objet central. Pour Grothendieck, le “schéma” est le point focal, source de toutes les projections
et de toutes les incarnations”.
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into algebraic ones. Algebraic geometry “is” commutative algebra. [Cartier 2001,
396-399] points out the historical context of the development of the ideas here
discussed; the stress put on the relation algebra-geometry (variety-ideal) according
to Cartier goes back to Dedekind. At the same time, the fact that schemes are at
variance with the paradigm “sets with structure” will, together with Buchsbaum’s
observations concerning the non set-theoretical nature of some categories produced
by formal reversion of arrows (see 3.1.2.2), lead to important insights about the
relation between category theory and the concept of structure in section 5.3.1.5.

4.1.1.3 The moduli problem and the notion of representable functor

The moduli problem is an outstanding and old conceptual problem in algebraic
geometry whose solution is related to Grothendieck’s work. In reading the follow-
ing very rough and largely unhistorical sketch of the moduli problem, one should
keep in mind that I am not primarily concerned with the overall history of the
conceptual problems of algebraic geometry but intend exclusively to pick out cer-
tain examples from Grothendieck’s contributions for the purpose to stress the role
of CT in the conceptual progress made, in particular as far as the epistemological
analysis of constitution of objects is concerned.

The problem was faced first in the times of Max Noether, Gordan, and Cleb-
sch, when one became interested in the classification of algebraic curves. “Moduli”
are continuous parameters allowing for a finer classification than the so-called
genus of the curves. The moduli manifolds were thought of as being themselves
varieties, each point of which corresponds to a curve. If a point of the moduli
manifold has such and such properties, then the corresponding curve should ide-
ally have corresponding properties. This relation is intuitively clear but became
only precise thanks to the concept of scheme: the solution of the “moduli problem”
is a functor which is even a sheaf and representable (that means, determined by a
single object); see for example [Hartshorne 1977, 56]. Hence, Grothendieck’s new
conceptual apparatus solved a prominent conceptual problem. See also Manin’s
account of this, as cited in section 5.4.4.3.

The literature contains some historical information concerning the concept
of representable functor: “The important notion of a representable functor is due
to Grothendieck” [Mac Lane 1965, 52]; Mac Lane mentions [Grothendieck 1960c,
1962] and further talks by Grothendieck in the Séminaire Bourbaki, [Grothendieck
1961] as well as notes by Dold. Also [Gabriel 1962, 332], when introducing the con-
cept, mentions that it goes back to [Grothendieck 1960c]. According to [Mac Lane
1971b, 103], Bourbaki implicitly anticipated the concept. Moreover, Mac Lane
notes that already before the introduction of the concept, examples of such func-
tors were investigated; “representable functors probably first appeared in topology
in the form of ‘universal examples’, such as the universal examples of cohomology
operations (for instance, in [[Serre 1953a]] [in] calculations of the cohomology,
modulo 2, of Eilenberg–Mac Lane spaces)” [1971b, 76]. For more details on some
of the issues mentioned, see [Dieudonné 1989, 151ff].
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4.1.1.4 The notion of geometrical point and the categorial predicate of having
elements

Recall that in the classical situation a variety corresponds to an ideal of a ring of
polynomials, and an irreducible variety—for example a point—to a prime ideal.
Now, if one considers, in place of prime ideals of a ring of polynomials, the prime
ideals of an arbitrary commutative ring, the intuitive geometrical meaning of the
concept “point” is given up. This lack of direct geometrical interpretation was
presented above as an apparent disadvantage of Grothendieck’s conceptual re-
newal; however, a different geometrical interpretation turned out to be useful and
sound334. At the same time, this situation implied the possibility to give a new
definition of the concept of geometrical point according to desirable properties.

Such a definition is given in another one of Grothendieck’s talks at the Sémi-
naire Bourbaki (exposé 182 p.18; [Grothendieck 1959b]): a geometric point of a
scheme335 is an arrow from the spectrum of an algebraically closed field to the
scheme under consideration. Since schemes are something like spectra which are
sets of prime ideals, and since an algebraically closed field has only one (trivial)
prime ideal, such an arrow can be thought of as picking out one prime ideal in
a spectrum, so the former point of view is only slightly modified. Categorially
speaking, such a “point” is an arrow from a terminal object of the category to
the object under consideration. A brilliant introduction into these ideas and their
historical context can be found in [Cartier 2001, 396-400].

Incidentally, this probably was the historical point of departure of a more
general idea, namely that of a categorial definition of the predicate of having
elements. The usual objects of mathematical discourse are more or less “auto-
matically” supposed to have elements (since they are defined with the help of set
theory). However, let us recall (with Manin’s words)336 that generally objects of
a category C are not sets; their nature is not specified. In particular, the sign ∈
a priori has no meaning in the language of CT; that means, CT a priori is not
able to speak about elements of objects337. Hence arose the problem of giving a
meaning to the proposition <the object X has elements> solely in terms of CT.
The definition of the corresponding predicate imitated the categorial shape of set
theory: Set has a terminal object338, and the elements of an object of Set cor-

334In section 1.3.2.1, I quoted from the preface of [Mumford 1965] concerning a desirable sepa-
ration of the conceptual framework of algebraic geometry from geometric intuition. I feel obliged
to complete this quote now since Mumford’s thinking would be misrepresented otherwise; he con-
tinues: “Moreover, it seems to me incorrect to assume that any geometric intuition is lost thereby
[i.e., by stating the definitions and theorems of algebraic geometry in the language of schemes]:
for example, the underlying variety in an algebraic scheme is rediscovered, and perhaps better
understood through the concept of geometric points” [ibid. p.iv].
335The term scheme is to be taken here in the sense of exposé 182, see n.326.
336see section 5.4.4.3.
337The question whether the objects constructed in CT can be defined inside set theory just

like “usual” objects of mathematical discourse was central in the foundational discussion on CT;
the history of this discussion is presented in chapter 6.
338characterized up to a unique isomorphism: a singleton.
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respond to the arrows (mappings) from this terminal object to the object under
consideration. Now, in another category, one of several situations can possibly
occur:

Situation 1. Everything is just as in Set.

Situation 2. There is a terminal object but for some objects X , there are no arrows
from the terminal object to X (consequently, X has no elements in the sense of
CT). An example is discussed in [Cartier 2001, 399]: the category339 E/S of fibre
bundles E

p→ S over a fixed base space S has a terminal object, namely S
Id→ S;

this means that points are given here by global sections s : S → E. But not every
fibre bundle has global sections!—for example, the Hopf bundle (S3 fibred over
S2 with the fibres homeomorphic to S1; see 2.1.2.2) has none340. Since sheaves in
the Lazard definition closely resemble fibre bundles, and since sheaf theory as a
whole concerns the question under which circumstances there are global sections
or not, the following statement is not astonishing:

What was clear [in the 50’s] was that sheaves did not have elements in
the same sense that modules have elements and that different, more intrinsic
formulations were required [Gray 1979, 60].

Hence, the expressive potential of CT related to the property of having elements is
a real advance in the case of sheaves. Obviously, the topological space E underlying
the espace étalé has elements in the usual sense; but considered as an object of the
category E/X , the espace étalé may cease to have elements in the sense of CT.

Situation 3. There is no terminal object. In this situation, one cannot speak
about elements in terms of CT—but one can do something else:

[ . . . ] the [project to find substitutes in the category language for the
notions of points or elements] [ . . . ] is based on the simple but useful remark
that any set X in the category Set can be identified with the set HomSet(e,X),
where e is a one-point set. In an arbitrary category C an analogue of e does
not necessarily exist. However, by considering instead HomC(Y, X) for all Y
simultaneously, we can recover complete information about the object X (up
to isomorphism) [ . . . ] [Gelfand and Manin 1996, 78].

339Compare section 3.2.2.2 for the definition of the arrows of this category.
340A proof of this fact is sketched in [Jänich 1990, 85]. Incidentally, this proof consists essentially

of applying the homology functor to the topological spaces involved; if there were a global section,
the group homomorphisms induced by the continuous mappings involved would have to have
certain properties which they cannot have according to their domains and ranges (the homology
groups of the spaces involved which happen to be known). Hence, this is an example of a
proposition about mappings between spaces for the proof of which the functorial point of view
is crucial.
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This categorial treatment of “information” will be discussed in section 5.3.2. The
idea to represent X by

⋃
Y Hom(Y, X) goes back to Eilenberg and Mac Lane, see

2.3.1.1.
Again, it may very well be that also a category without a terminal object has

a set-theoretic realization and that correspondingly the talk about objects having
elements in the sense of set theory makes perfect sense. However, one speaks then
probably about aspects of these objects which are not expressible on the level of
the category in question. One of the aims of CT is categorization in the sense
of a separation of different contexts, while set theory has rather the (sometimes
contraproductive) tendency to unify everything.

Historically341, Grothendieck introduced these conceptual tools, as Cartier
points out, in view of a solution method for problems in algebraic geometry,
namely to make equations without solutions correspond to spaces without points.
Later, this became basically the method of attack for the Fermat conjecture.

It is interesting that this new concept of “point”, because of its achievements,
is considered as the “right” concept342, as if this conceptualization were intended
to be an explication of the intuitive, informal concept of point, an explication
the “success” of which can be measured by inspecting the intended meaning. The
crucial idea in Hilbert’s Grundlagen der Geometrie was to free the concept of
“point” as well as other geometrical concepts from traditional determinations of
their content; here, one has the impression that this freedom was used simply to
pass to different, new, determinations of content. However, the criterion at work
is no longer the agreement with an intuitive idea but the potential of the concept
thus defined to make problems accessible by available tools of investigation.

4.1.2 From the Zariski topology to Grothendieck topologies

4.1.2.1 Problems with the Zariski topology

When Grothendieck’s work on homological algebra was presented in chapter 3,
the decisive role of Zariski topology for the emergence of the Tôhoku article was
pointed out. Here, this topology shall be discussed in more detail insofar as it
turned out to be inappropriate as a starting point for certain investigations343
and led thus to conceptual innovations.

341It would be interesting to investigate whether there were any historical connections between
the emergence of the categorial definition of having elements and the problem of diagram chasing
in abstract abelian categories, as discussed in 3.3.4.4. At the present moment, I have no answer
to this question.
342There are several perspectives under which a concept of point is discussed in Grothendieck’s

work. [McLarty 2006b] says “[Grothendieck] describes a topos as a kind of space. In this sense
the category of sets is a one-point space” and gives corresponding citations from Récoltes et
semailles. The concept of (Grothendieck) topos will be discussed, together with Grothendieck’s
vision concerning this concept, in section 4.1.2.3.
343As we will see, this is the case in particular as far as the Weil conjectures are concerned:

Zariski topology does not yield the “Weil cohomology” (see 4.2.2).
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We investigated already the properties of Zariski topology which are respon-
sible for the absence of a “good” sheaf cohomology for Zariski sheaves before the
Tôhoku paper (see 3.2.3.2). With the solution of this problem by Grothendieck, it
was naturally no longer necessary to consider these properties of Zariski topology
as disadvantages. However, there are more perspectives under which some of these
properties are disadvantageous. The following quotations specify such perspectives
and indicate some features of Grothendieck’s way out of the difficulties344:

The only topology available on an abstract algebraic variety or scheme, the
Zariski topology, did not have “enough open sets” to provide a good geomet-
ric notion of localization. In his work on descent techniques [[Grothendieck
1960c]] and the étale fundamental group [SGA 1], A.Grothendieck observed
that to replace “Zariski-open inclusion” by “étale morphism” was a step in the
right direction; but unfortunately the schemes which are étale over a given
scheme do not in general form a partially ordered set. It was thus necessary
to invent the notion of “Grothendieck topology” [ . . . ] [Johnstone 1977, xi]

The Grothendieck idea to overcome [the] insufficiency [of Zariski topology]
was to extend the notion of topology: he suggested to consider as “open sets”
not just open imbeddings but certain more general mappings f : U → X such
as, for example, [ . . . ] flat morphisms (in the category of schemes), etc. In
such [a] generalization open sets become objects of some category. [ . . . ] The
essential point is that the notion of [ . . . ] covering is not deduced from some
structures in the category, but instead forms a part of the definition [Gelfand
and Manin 1996, 99].

Before discussing more closely Grothendieck’s (categorially inspired) way out,
I would like to note some observations about the role of Zariski topology in the
motivation of the later concepts. It is clear first of all that the idea to give up
Zariski topology came up only after Serre had tried in vain to meet the problems
by using exclusively this topology [Grothendieck 1960a, 103]. This indicates that
Zariski topology was considered as the obvious and intuitive tool. Even in texts
of the “mature” discipline345, Zariski topology is still discussed—on the one hand
because this topology continues to play an important role in certain contexts,
but moreover because it serves at least partially to motivate the introduction
of the more elaborate concepts. Such a motivation seems to be considered as
indispensable; for else these concepts would completely “fall from heaven”. Hence,
the justification of the concepts comes from the progress made in the manipulation
of the objects in comparison to what one was able to achieve employing a concept
which was in principle more intuitive. The Zariski topology belongs by no means
to an obsolete stage of conceptual development but serves as a key to the “right”
stage.

344For the concept “étale” or “flat” mentioned in the quotations, see section 4.2.2.
345SGA 4 1

2
exposé I p.4, [Gelfand and Manin 1996].
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4.1.2.2 The notion of Grothendieck topology

We saw in 3.3.3.1 that in the Tôhoku paper Grothendieck considered the system
of open sets of a topological space as a category (with the inclusion mappings as
arrows346). The concept of a “site” is obtained by generalizing this point of view.
The basic idea is that the operations on open sets essential in the definition of
sheaves, namely finite intersections and arbitrary unions347, can be characterized
set-theoretically, but also in diagram language as certain objects of Open(X) with
a universal mapping property: the intersection U1 ∩U2 is the product in the sense
of category theory in Open(X) (which means that for every V with V ⊂ U1 and
V ⊂ U2, the dotted arrow in the following diagram is unique348 and makes the
diagram commutative).

U1 ∩ U2

φ
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�� ψ
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U1 U2

V

φ′
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ψ′
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Similarly,
⋃

i Ui can be seen as the categorial sum of the Ui: for a two-element
index set, just take the diagram dual to the above diagram. A covering is a
family of inclusions Ui → U with the obvious arrow

⋃
i Ui → U invertible. One

can consider equally well the category Open(X)/X whose objects are the arrows
U → X in Open(X); thus one obtains a fibre product and an amalgamated sum.
Now, if among the properties of the original set-theoretical constructions one keeps
just the properties expressible in diagram language and forgets about the rest, one
can specify intersections, unions, coverings in categories different from Open(X) or
Open(X)/X , respectively; one simply has to prove that the corresponding objects
exist in these categories. A (Grothendieck-)“topology” on such a category is any
family of “coverings” (families of arrows) having certain properties. It was in this
way that Grothendieck arrived at the concept of a site (a category with such a
Grothendieck-topology)349. It is to be noted that in this more general situation,
there can be more than one arrow between two objects. Grothendieck showed that
the category of S-schemes with étale morphisms350 is a site.

One can define sheaves on a site because the above described objects can be

346Actually, we considered so far rather the category dual to this category. Hence, in the
following (anyway rather informal) discussion, it will be convenient to think of a presheaf as a
contravariant functor on a category with a Grothendieck topology.
347See Grothendieck’s sheaf definition in section 3.3.3.1.
348Since the arrows in the category Open(X) are the inclusions, the uniqueness condition is

satisfied automatically because there is at most one arrow between two objects; compare n.120.
349For a precise definition, see for example SGA 4 1

2
15ff or [Gelfand and Manin 1996, 100].

350See section 4.2.2.
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substituted for the intersections, unions and coverings intervening in the sheaf con-
ditions. Here, Lazard’s sheaf definition (where by endowing a set with a structure
one obtains an espace étalé) is no longer available because no topological space
in the classical sense is at hand. But one has still a kind of sheafification (now
characterized by a universal property):

One aspect of sheaves on a topological space, which does not generalize
to sheaves on a site, is their alternative representation [ . . . ] as local home-
omorphisms. Nevertheless, the equivalent of [the theorem that the inclusion
functor Shv(X) → STop

has a left adjoint] remains true; i.e., we have an
associated sheaf functor L : SCop → Shv(C, J) which is left adjoint to the
inclusion functor[351] [Johnstone 1977, 15].

Hence, the difference from the classical case is merely that the construction of L
is no longer related to a local homeomorphism.

At this stage, category theory becomes even more important for the sheaf
concept than it was in the Tôhoku paper. For the generalization undertaken here
leads to constructions which fall obviously under the concept of category and can
no longer be “equally well” considered as a lattice or something similar, such as
was the case for of open sets of a topological space (to the contrary, one makes
precisely an effort to have a category which is not necessarily a lattice in that it can
have more than one arrow between two given objects). Here, Grothendieck must
define sheaves as certain functors for the first time while in the former situations
it was merely useful to do so.

4.1.2.3 The topos is more important than the site

Grothendieck did not stop at the concept of site but soon started to study the
sheaves defined on a site as objects of a category. Perhaps the first definition of
this kind of category (which was later called “Grothendieck topos”) is to be found
in exposé IV of SGA 4, p.4 (U denotes a universe352):

We define a U -topos, or simply topos if no confusion can occur, to be a
category E such that there exists a site C ∈ U such that E is equivalent to
the category C∼ of U -sheaves of sets on C353.

On p.vi at the beginning of the volume, the intention of the concept is presented
thus:

Our guiding principle has been to develop a language and notation as they
are already actually used in the various applications, in order to avoid losing

351In Johnstone’s notation, S replaces Set, T replaces Open(X) (such that STop
becomes the

category of presheaves of sets on X) and (C, J) is a site. For the adjunction in the “classical”
case, see 3.3.4.3.
352See 6.4.4.2.
353“On appelle U-topos, ou simplement topos si aucune confusion n’est à craindre, une catégorie

E telle qu’il existe un site C ∈ U tel que E soit équivalente à la catégorie C∼ des U-faisceaux
d’ensembles sur C”.
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contact with the “geometrical” (or “topological”) content of various functors
that one feels compelled to consider between sites. To this end, the notions
of topos and of morphism of toposes seem to be the indispensable thread,
and it is convenient to give them the central place, whereas the notion of site
becomes an auxiliary technical notion354.

Hence, the topos is more important than the site in Grothendieck’s eyes. This is
explained in the introduction of exposé IV (pages 299 and 301):

We have seen in [exposé] II various exactness properties of categories of the
form [ . . . ] category of sheaves of set [ . . . ] on a small site; these properties can
be expressed by saying that in many respects these categories (which we shall
call toposes) inherit the familiar properties of the category [ . . . ] of (small)
sets. On the other hand, experience shows that we should consider various
situations in mathematics above all as technical means to construct the cor-
responding categories of sheaves (of sets), i.e., the corresponding “toposes”.
[ . . . ]

Hence, one can say that the notion of topos, natural devirative of the
sheaf-theoretical standpoint in topology, in its turn constitutes a substantial
enlargement of the notion of topological space [original note: see [[Hakim
1972]], or 4.1 and 4.2 hereafter, concerning the precise relations between the
notion of topos and the notion of topological space], covering a large number
of situations which before were not considered as flowing from topological
intuition. The characteristic feature of such situations is that one has a notion
of “localization” at one’s disposal which is precisely formalized by the notion
of site and, in the last analysis, by the notion of topos (through the topos
associated to the site). As the term “topos” itself is precisely intended to
suggest, it seems reasonable and legitimate to the authors of the present
seminar to think that the subject matter of topology is the study of toposes
(and not simply of topological spaces)355.

354“Notre principe directeur a été de développer un langage et des notations qui soient ceux qui
servent déjà effectivement dans les diverses applications, de sorte à ne pas perdre contact avec le
contenu “géométrique” (ou “topologique”) des divers foncteurs qu’on est amené à considérer entre
sites. Pour ceci, les notions de topos et de morphisme de topos semblent être le fil conducteur
indispensable, et il convient de leur donner la place centrale, la notion de site devenant une
notion technique auxiliaire”.
355“Nous avons vu dans [l’exposé] II diverses propriétés d’exactitude de catégories de la forme

[ . . . ] catégorie des faisceaux d’ensembles sur [ . . . ] un petit site, propriétés qu’on peut exprimer
en disant qu’à beaucoup d’égards, ces catégories (que nous appelerons des topos) héritent des
propriétés familières de la catégorie [ . . . ] des (petits) ensembles. D’un autre coté, l’expérience
a enseigné qu’il y a lieu de considérer diverses situations en Mathématique surtout comme un
moyen technique pour construire les catégories de faisceaux (d’ensembles) correspondantes, i.e.,
les “topos” correspondants. [ . . . ]

On peut donc dire que la notion de topos, dérivé naturel du point de vue faisceautique en
topologie, constitue à son tour un élargissement substantiel de la notion d’espace topologique
[original note : Cf. [[Hakim 1972]], ou 4.1 et 4.2 plus bas, pour les relations précises entre la
notion de topos et celle d’espace topologique], englobant un grand nombre de situations qui autre-
fois n’étaient pas considérées comme relevant de l’intuition topologique. Le trait caractéristique
de telles situations est qu’on y dispose d’une notion de “localisation”, notion qui est formalisée
précisément par la notion de site et, en dernière analyse, par celle de topos (via le topos associé
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Why is this new concept adapted for the great tasks it is developed for? The
literature is not stingy with helpful comments:

The key to Grothendieck’s claim that toposes are the proper objects of
topology is that the topological notion of cohomology generalizes very nicely
to toposes [McLarty 1990, 357].

Since the cohomological properties of a space are completely determined
by the category of sheaves over it, it is these categories that should be the
primary objects of study in topology, rather than topological spaces them-
selves. After a suitable axiomatization of the properties of such categories we
arrive at the notion of a topos [Gelfand and Manin 1996, vii].

Grothendieck[, i]nspired by Riemann’s idea of a surface stacked over the
plane, [ . . . ] replaced the open sets of a space X by spaces stacked over
it. The same thing can be expressed by considering the category [ . . . ] of
sheaves over X. The constructions over topological spaces translate into (and
are replaced by) constructions on categories of sheaves [Cartier 2001, 395].

Grothendieck had the vision of a “geometry without points”, focussing on sheaves
instead. A point corresponds to a stalk of the sheaf, hence only contains informa-
tion about the immediate neighbourhood—thus it is not astonishing that focussing
the sheaves leads to more far-reaching results. The typical method of this approach
is the transition to a larger category (actually, a category of sheaves), for example
from varieties to schemes or from complex manifolds to algebraic spaces, and it
is only there that meaningful operations can start (since only there appropriate
objects are available—as we saw for products above). Afterwards, one descends
again and obtains the solution of the problem. Fortunately, “anything” can be em-
bedded in an appropriate category of sheaves (a topos). What is “fundamental”
about this theory is that one can regain any one of the usual geometries therein;
in this sense, Grothendieck’s program is similar to Klein’s Erlanger Programm356.

But behind these bold visions, the mill of conceptual differentiation continued
unimpressedly to grind. The observation that the concept of site is only an auxil-
iary notion and topos is in reality the important concept obviously leads to the idea
of eliminating the concept of site from the definition of the concept of Grothen-

au site). Comme le terme de “topos” lui-même est censé précisément le suggérer, il semble rai-
sonnable et légitime aux auteurs du présent Séminaire de considérer que l’objet de la topologie
est l’étude des topos (et non des seuls espaces topologiques)”.
356If it is at all admissible to make such anachronistic comparisons in a book on history, I

think that Grothendieck’s program does more for a continuation of the Erlanger Programm than
Eilenberg and Mac Lane when simply saying that in their theory, a geometrical space with its
group of transformations is generalized to a category with its algebra of mappings (compare
section 5.3.1.5). Readers who are not afraid of anachronism may wish to see section 4.2.3 and
n.528, too.
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dieck topos. J. Giraud357 proves that “Grothendieck toposes may be completely
characterized by a combination of ‘exactness conditions’ concerning existenceand
properties of limits, and ‘size conditions’ ” [Johnstone 1977, 15]. This means that

[ . . . ] the definition of a Grothendieck topos may be reduced to a set
of axioms which refer [ . . . ] not to any site of definition for it. This is an
important advance, since it is clear that the same topos [ . . . ] can be defined
by many different sites [Johnstone 1977, 23].

Hence, Giraud opens a new level of generalization which will be further explored in
the theory of so-called elementary toposes (see 7.3.1; however, the concept studied
in this theory will be no longer equivalent to the concept of Grothendieck topos
since it is a first-order concept).

4.2 The Weil conjectures
What is aimed at here is mainly an evaluation of the role of categorial methods
in Grothendieck’s work on the Weil conjectures. It is true, a relatively detailed
description of the conjectures is indispensable for an interpretation of this role;
nevertheless, the following sections are not intended to be an exhaustive history
of these conjectures. For example, Deligne’s proof of the last conjecture in [1974]
is only mentioned marginally—and this could not be tolerated in a presentation
seriously aiming at completeness358.

4.2.1 Weil’s original text

The conjectures are to be found for the first time in André Weil’s work “Numbers
of solutions of equations in finite fields” [1949]. The equations to be considered
are those of the type

a0x
n0
0 + a1x

n1
1 + · · · + arx

nr
r = b. (1)

Weil starts with a short historical overview of what has been achieved concerning
the number of solutions of equations of that type, beginning with some special
cases treated by Gauss, then showing up connections to the Riemann hypothesis
for certain function fields defined by such equations, and culminating in the then
actual state of the art. After this overview, the following remarks are made:

As equations of type (1) have again recently been the subject of some
discussion [ . . . ], it may therefore serve a useful purpose to give here a brief
but complete exposition of the topic. This will contain nothing new, except

357whose contributions are to be found in SGA 4, exposé IV, 1.2; see also [Johnstone 1977,
15ff]. For the history of different forms of Grothendieck topology (and further references to the
work of Giraud), see [Gray 1979, 61f].
358For the prehistory of the Weil conjectures, see [Weil 1974], [Dieudonné 1988] and [Houzel

1994].
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perhaps in the mode of presentation of the final results, which will lead to the
statement of some conjectures concerning the number of solutions of equations
over finite fields and their relation to the topological properties of the varieties
defined by the corresponding equation over the field of complex numbers
[1949, 497f].

This “statement of some conjectures” is to be found on p.507; Weil first gives the
Poincaré polynomial “in the sense of combinatorial topology” for a certain complex
variety; according to Weil, this polynomial had been calculated by Dolbeault. Weil
comments:

This, and other examples which we cannot discuss here, seem to lend
some support to the following conjectural statements, which are known to be
true for curves, but which I have not so far been able to prove for varieties of
higher dimension.

Before outlining the statements, it is worth noting that they are indeed “known to
be true for curves” since Weil proved this fact in [1948]. Here are the conjectures:

Let V be a variety without singular points, of dimension n, defined over
a finite field k with q elements. Let Nν be the number of rational points on
V over the extension kν of k of degree ν. Then we have

∞X
1

NνUν−1 =
d

dU
log Z(U),

where Z(U) is a rational function in U , satisfying a functional equation

Z

„
1

qnU

«
= ±qnχ/2UχZ(U),

with χ equal to the Euler–Poincaré characteristic of V (intersection number
of the diagonal with itself on the product V × V ).

Furthermore, we have:

Z(U) =
P1(u)P3(u) . . . P2n−1(U)

P0(u)P2(u) . . . P2n(U)
,

with P0(U) = 1 − U , P2n(U) = 1 − qnU , and, for 1 ≤ h ≤ 2n − 1:

Ph(U) =

BhY
i=1

(1 − αhiU)

where the αhi are algebraic integers of absolute value qh/2.
Finally, let us call the degrees Bh [ . . . ] the Betti numbers of the variety

V ; the Euler–Poincaré characteristic χ is then expressed by the usual formula
χ =

P
h(−1)hBh. The evidence at hand seems to suggest that, if V is a

variety without singular points, defined over a field K of algebraic numbers,
the Betti numbers of the varieties Vp , derived from V by reduction modulo
a prime ideal p in K, are equal to the Betti numbers of V (considered as a
variety over complex numbers) in the sense of combinatorial topology, for all
except at most a finite number of prime ideals p.
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For short, Weil introduces certain quantities Bh related to the function
Z(U)—he calls these quantities Betti numbers—; he then conjectures that from
these quantities the Nν can be calculated, and that the quantities essentially are
given through the Betti numbers in the sense of combinatorial topology of a cer-
tain complex variety related to the variety under consideration. In particular, the
conjecture that the absolute values of the αhi are all qh/2 may be seen as an analog
of the Riemann hypothesis for the function Z. Weil’s exposition of the conjectures
is followed by a short discussion of a sample variety which has actually a property
which would follow as a corollary if the conjectures were theorems.

In [1956, 555f], Weil gave a heuristic argument in favour of his generaliza-
tion of the Riemann hypothesis by formulating this generalization as a hypothesis
concerning the fixed points of a Frobenius automorphism whose correctness in
certain cases follows from the classical Lefschetz fixed point theorem359. Later, it
became common to think that this heuristic argumentation could be made exact
by constructing a cohomology theory for varieties over finite fields; see for exam-
ple Katz’ review of [Deligne 1974] (MR49#5013) p.927. This approach relies on
the fact that in each cohomology theory, an analog of the classical Lefschetz fixed
point formula is valid. This formula (which in general yields the number L(f, X)
of fixed points of a mapping f of a topological space X to itself) has, according to
Katz’ review or [Hartshorne 1977, 454], the following task in this “cohomological”
approach: For a projective variety X over k = Fq, one considers the corresponding
variety X over the algebraic closure k; the Frobenius morphism f maps a point
P in X with coordinates (ai), ai ∈ k, on the point with coordinates (aq

i ). P is a
fixed point of f if and only if the coordinates are in k, and more generally a fixed
point of f r (f iterated r times) if the coordinates are in Fqr . Hence, if Nr denotes
the number of points of X with coordinates in Fqr , one has Nr = L(f r, X). One
can now use the formula for L to obtain a representation of the power series Z as
a quotient of polynomials, but the proposition concerning the coefficients of the
polynomials is not yet proved (this was actually left to be done by Deligne).

A similar strategy applies in the case of the functional equation; there, one
makes the assumption that the cohomology theory admits a kind of Poincaré
duality [Hartshorne 1977, 456]. In both cases, one makes use of the fact that the
cohomology groups are in particular vector spaces such that one can use results
of linear algebra concerning traces and determinants.

At least in print, Weil himself did not put the strategy in terms of a hypo-
thetical cohomology theory. As [McLarty 2006b] puts it: “the topological strategy
was powerfully seductive but seriously remote from existing tools”. McLarty cites
personal communication with Serre according to which Weil was explaining things
(in conversation) in terms of cohomology yet did not want to predict the existence
of such a theory. But in the thinking of Serre and Grothendieck, the persuasion
that such a theory must exist soon took shape, and it was the elaboration of this
strategy which laid finally the foundations for success (see 4.2.2).

359See 2.1.2.1.
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The proof of the conjectures took 25 years and the efforts of some of the
most productive mathematicians in the second half of the twentieth century. It
is hence justified to speak about Weil’s original paper as the germ of a large-
scale research program360. Weil liked to write programmatic texts; see [1952a]
and [1956]. Was he thinking of himself as the spiritus rector of the community of
algebraic geometry? This could have been the starting point for the conflict with
Grothendieck who equally claimed on this role361.

4.2.2 Grothendieck’s reception of the conjectures and the search for
the Weil cohomology

Grothendieck tells in Recoltes et Semailles362 that he learned for the first time in
1955 by Serre about the Weil conjectures, and that Serre explained them imme-
diately in cohomological form to him. The task of conceptual clarification flowing
from this is presented by Dieudonné as follows:

Define, for algebraic varieties over a field of characteristic p > 0, cohomol-
ogy groups with coefficients in a field of characteristic 0, having the properties
which Weil specified in view of a proof of his famous conjectures363 [Dieudonné
1990, 6].

Grothendieck used the shorthand “Weil cohomology” as early as in the program-
matic text [1960a, 103]: “[the] initial aim was to find the “Weil cohomology” [ . . . ]”;
Grothendieck claims even that this was already the aim in [Serre 1955]. [Kleiman
1968] develops an axiomatic characterization of a “Weil cohomology theory”.

However, the only topology originally available, the Zariski topology, is not
able to provide this Weil cohomology theory since the desired Lefschetz type for-
mula cannot exist in characteristic p > 0. Grothendieck and his coworkers in SGA
4 developed another cohomology theory—�-adic cohomology—which has those
propriétés énumérées. In the avant-propos of SGA 4 (vol.1 p.XI), one reads:

The principal aim of the present seminar is to develop the formalism of
the “Weil cohomology” of sheaves. Essentially starting from results which
are proved here, some well-known arguments, actually due to Weil himself,
allow one to deduce part of the Weil conjectures concerning L functions of
projective nonsingular varieties over a finite field364.

360The compilation of results in [Eilenberg 1949, 30] §15 is typical normal science bringing
together concerted efforts of decades, while Weil’s simultaneously published conjectures in [Weil
1949] mount a research program that will determine the normal science of the group around
Grothendieck some fifteen years later. Again, two separated communities are at work (see 3.4.2).
361Compare [Krömer 2006b].
362as cited in [Herreman 2000, 12].
363“définir pour les variétés algébriques sur un corps de caractéristique p > 0 des groupes de

cohomologie à coefficients dans un corps de caractéristique 0, ayant les propriétés énumérées
par Weil en vue de prouver ses fameuses conjectures”.
364“Le but principal du présent Séminaire est de développer le formalisme de la “cohomologie de

Weil” des schémas. A partir essentiellement des résultats qui sont démontrés ici, des arguments
bien connus, d’ailleurs dûs à Weil lui-même, permettent de déduire une partie des conjectures
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We saw already which are the well known arguments going back to Weil. It is
to be observed, however, that what is looked for now is a Weil cohomology for
schemes (des schémas) and not for varieties. The original notes to the quotation
point out that the approach is incomplete and makes progress only step by step:

It has not yet been proved that the eigenvalues of the Frobenius homo-
morphism acting on the Hi(X, Z	) are algebraic integers, nor a fortiori that
the absolute values are equal to qi/2.

[ . . . ] (Added October 1968). For an exposition taking stock of the actual
state of the Weil conjectures, see [[Kleiman 1968]]

(Added August 1969). The fact that the eigenvalues are algebraic integers
has recently been proved by P.Deligne (see SGA 7 XXI 5)365.

Hence, what is still to be proved at the end is just the analog of the Riemann
hypothesis. The sequel to this development is nicely described in Katz’ review
of [Deligne 1974] MR49#5013. The text of SGA 4 continues with some remarks
concerning the role of the so-called étale366 topology:

In the present seminar, we restrict ourselves to the study of the cohomol-
ogy of schemes, relatively to étale topology. [ . . . ] It will be seen that most
of the classical results concerning cohomology of ordinary topological spaces
(various spectral sequences, finiteness theorems, Künneth, duality, Lefschetz
theorems) can be formulated and demonstrated in the new context [ . . . ] One
obtains a cohomology theory “with coefficients in characteristic 0” (as asked
for by Weil) by a passage to the projective limit [ . . . ], which allows one to
define a cohomology with coefficients in the ring Z	 of �-adic integers using
the coefficients Z/�νZ, ν → +∞. If � is prime to the residual characteristics,
this cohomology has all the good usual properties of the classical cohomology
with coefficients Z (hence, it is well adapted to the formulation of the Weil
conjectures)367 .

de Weil sur les fonctions L des variétés projectives non singulières sur un corps fini”.
365“Au moment d’écrire ces lignes, il n’est pas prouvé que les valeurs propres de l’homomor-

phisme de Frobenius opérant sur les Hi(X, Z	) sont des entiers algébriques, ni a fortiori que les
valeurs absolues sont égales à qi/2.

[ . . . ] (Rajouté Octobre 1968). Pour un exposé faisant le point de l’état actuel des conjectures
de Weil, cf. [[Kleiman 1968]]

(Ajouté en Août 1969). Le fait que les valeurs propres soient des entiers algébriques a été
prouvé récemment par P.Deligne (Cf. SGA 7 XXI 5)”. In fact, the reference to SGA 7 seems
to be erroneous; on p.5 of exposé XXI of SGA 7 (actually by Nicolas Katz), there is no recent
result by Deligne mentioned, see http://modular.fas.harvard.edu/sga/sga/index.html.
366As mentioned in section 4.1.2.1, this topology was successfully used by Grothendieck to

overcome some deficiencies of Zariski topology related to the localization of properties. I will not
give here the precise definition of the étale Grothendieck topology; see for example [Johnstone
1977, 21]. As already explained in 4.1.2.2, the key idea is that the task of the algebra of the
inclusions of open sets in the sheaf definition is accomplished by the algebra of certain arrows,
namely the algebra of so-called étale arrows between schemes.
367“Dans le présent séminaire, nous nous bornons à l’étude de la cohomologie des schémas,

relativement à la topologie étale. [ . . . ] on verra que la plupart des résultats classiques concer-
nant la cohomologie des espaces topologiques ordinaires (suites spectrales variées, théorèmes de
finitude, Künneth, dualité, théorèmes de Lefschetz) peuvent se formuler et se démontrer dans le
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Hence, the Weil cohomology and its special properties are already necessary for the
formulation of the conjectures in the new framework. It follows a short discussion
pointing out that under certain circumstances “classical” results so far only proved
by transcendental means can now be proved by purely algebraic means—and that
actually the validity of the results can thus be extended since the transcendental
proofs contained conditions concerning singularities.

Grothendieck succeeds to arrive at a Lefschetz type fixed point formula by
application of the so-called “formalism of the 6 operations” on étale cohomology
[Deligne 1998, 17]—I will illustrate this below as far as the example of the duality
theorem is concerned. One feels now that the obvious first step towards Weil
cohomology—the investigation of a topology on the algebraic varieties—was by far
not sufficient (since the cohomology theory available there has not the necessary
properties): in the ultimate construction of the cohomology theory, numerous
categorial concepts play a role. It was necessary to move from varieties to schemes
and from Zariski topology to the étale site (making the étale topology the most
important Grothendieck topology, at least in the present context368). Further, a
passage to an infinite limit was necessary on the algebraic level; is it too far-fetched
to interpret this as an analogy to the Čech procedure (see 2.2.5) in the abelian
variable (see 3.4.1)?

It may very well be that also the motivation for the introduction of the
concept of derived category (see the end of this section) came from the search
for the Weil cohomology, in particular as far as the duality theorem is concerned:
“in order to obtain the duality theorem in a satisfactory form, one needed to have
the language of derived categories at one’s disposal (pour obtenir le théorème de
dualité sous une forme satisfaisante, il fallait disposer du langage des catégories
dérivées)” [Houzel 1990, 20]. The basic idea in the proof of the duality theorem is
the following: to a morphism f : X → Y of schemes, one can apply the operation
f∗ of the direct image of sheaves of OX -modules, resp. the corresponding derived
functor Rf∗ on the derived category. Now, one constructs an adjoint f ! in the
following sense:

R HomOX (F, f !G) ∼= R HomOY (Rf∗F, G)

(see also [Kashiwara and Schapira 1990, 139], [Illusie 1990, 378ff], [Verdier 1996,
10ff].) Houzel gives an example (with certain assumptions on f) for which it is
possible to write down f ! very simply; in general, this is quite complicated. The
corresponding construction for étale cohomology is to be found in SGA 5 where

nouveau contexte [ . . . ] On obtiendra une théorie cohomologique “à coéfficient de caractéristique
0” (comme demandée par Weil) par un passage à la limite projective [ . . . ], permettant de définir
une cohomologie à coefficients dans l’anneau Z	 des entiers 
-adiques à partir des coefficients
Z/
νZ, ν → +∞. Lorsque 
 est premier aux caractéristiques résiduelles, cette cohomologie pos-
sède toutes les bonnes propriétés habituelles dans la cohomologie à coefficients Z classique (et
se prête donc à la formulation des conjectures de Weil)”.
368“For Grothendieck, importance of topos theory is by no means limited to the particular case

of étale topology (pour Grothendieck, l’importance de la théorie des topos dépasse de beaucoup
le seul cas de la topologie étale” [Deligne 1998, 16].
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the duality theorem for �-adic cohomology is proved. The transition to the derived
category is necessary because f∗ itself has in general no adjoint (embeddings f of
open or closed sets constitute an exception [Gelfand and Manin 1996, 234], but it
was just this situation that one gave up when passing to Grothendieck topologies).

It is interesting that the above mentioned isomorphism is interpreted at all as
expressing a Poincaré type duality. [Kashiwara and Schapira 1990, 140] explain
how the various ingredients are to be specialized to obtain the usual Poincaré
duality. First, one can, just as in the case of the Riemann–Roch theorem (3.3.3.5),
eliminate the “relative” accent by taking for X a point; if one takes further Y as an
n-dimensional oriented manifold and the sheaves F, G as the appropriate constant
sheaves with fibre Q, the isomorphism reads

(Hn−j
c (Y, Q))∗ ∼= Hj(Y, Q);

hence, one has indeed essentially the usual369 Poincaré duality (c denotes a certain
type of support, ∗ the formation of the dual space in the sense of vector space
theory). The more general isomorphism (the adjunction f !/Rf∗) is thus a “duality
theorem in relative form”.

There is no space here to treat the concept of derived category in detail—
neither as far as its precise definition nor as far as its history is concerned. For
the definition, see for example [Kashiwara and Schapira 1990] or [Gelfand and
Manin 1996], for the history [Illusie 1990] or Houzel [1990, 1998]. In the context
of étale cohomology, the concept seems mostly to have the task of providing an
appropriate language, while it becomes essential in later applications—see n.165.
The theory of derived categories is applicable through the “6 operations” (certain
functors between derived categories; see [Deligne 1998, 17]).

Since in the present work I am particularly interested in the pragmatics
of mathematical object construction, I should stress that the theory of derived
categories seems to be rich with interesting phenomena in this respect. Basic ideas
are that one prefers to save auxiliary constructions instead of throwing them away,
and that one wants to work directly on the complexes in homological algebra (by
considering the categories which they form). The localization of a category, playing
a role in the construction of a derived category, is similar to the construction of the
dual category [Gelfand and Manin 1996, 145]; one obtains formal expressions as
morphisms and a priori has no insight in the possibilities of calculation with these
formal expressions. In such constructions, one can verify equations between arrows
no longer by applying the arrows to elements (ibid. 154); but one does as if one
could. Derived categories allow, so to say, for a temporary calculation with “virtual
objects”, something like vector spaces of negative or fractionary dimension. One
calculates temporarily in a black box with nonexisting objects but jumps out again
afterwards. The role in a calculation played by the virtual objects (the objects of

369For the history of Poincaré duality, see, for instance, [Pontrjagin 1931] and [Massey 1999,
579].
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the derived categories) can be compared with that of imaginary numbers (and the
passage to the derived category with that to the algebraic closure).

4.2.3 Grothendieck’s visions: Standard conjectures, Motives and
Tannaka categories

Already the work of Grothendieck presented in the preceding sections may be
called “visionary”. Here, however, I speak about “visions” because Grothendieck’s
standard conjectures, motives and Tannaka categories belong to unfinished pro-
jects370. In the context of the analog of the Riemann hypothesis, the projects
can be considered as having failed since Deligne managed to do without their
completion. If one considers them rather as a general sketch of a conceptual
rebuilding of algebraic geometry, a rebuilding which would produce the proof of
the Weil conjectures as a byproduct (and this seems to have been Grothendieck’s
intention), they are simply unfinished projects. They are briefly presented here
insofar as CT plays a role in them.

Grothendieck’s proof sketch for the analog of the Riemann hypothesis (em-
ploying the concepts of standard conjectures, motives and Tannaka categories)
goes back to [Serre 1960] which is an extract from a letter by Serre to Weil, dated
November 9, 1959. In this letter, Serre presents a “procedure which applies to vari-
eties of arbitrary dimension and by which one obtains simultaneously that certain
traces are positive and a determination of the absolute values of certain eigenval-
ues, in perfect analogy with your dear conjectures on zeta functions (procédé [qui]
s’applique aux variétés de dimension quelconque, et [par lequel] on obtient à la
fois la positivité de certaines traces, et la détermination des valeurs absolues de
certaines valeurs propres, en parfaite analogie avec tes chères conjectures sur les
fonctions zêta)”. The proposition made by Serre is the following:

Theorem 1. Let V be an irreducible projective variety defined on [C],
and let f : V → V be a morphism from V to itself. Suppose that there
exists an integer q > 0 and a hyperplane section E of V such that the divisor
f−1(E) is algebraically equivalent to q · E. Then, for every integer r ≥ 0,
the eigenvalues of the endomorphism f∗

r of Hr(V, C) defined by f have the
absolute value qr/2.

(Note that if one replaces C by a finite field Fq and f by the corresponding
Frobenius morphism, the divisor f−1(E) is equivalent to q · E; hence, the
theorem 1 is the Kählerian analog of the “Riemann hypothesis”.)371.

370“Grothendieck’s broken dream was to develop a theory of motives, which would in particular
unify Galois theory and topology. At the moment we have only odd bits of this theory [ . . . ]”
[Cartier 2001, 405]. See also [Deligne 1998, 18], [Grothendieck 1969, 198], [Saavedra Rivano 1972,
394f]
371“Théorème 1. Soit V une variété projective irréductible, non singulière, définie sur [C], et

soit f : V → V un morphisme de V dans elle-même. Supposons qu’il existe un entier q > 0 et
une section hyperplane E de V tels que le diviseur f−1(E) soit algébriquement équivalent à q ·E.
Alors, pour tout entier r ≥ 0, les valeurs propres de l’endomorphisme f∗

r de Hr(V, C) défini par
f ont pour valeur absolue qr/2.
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In his Collected papers, just as in [Colmez and Serre 2001], Serre adds various notes
and comments to the reprinted works. Concerning the quoted passage, he notes
that Deligne 1974—Serre writes erroneously 1964—has shown that for character-
istic p > 0 the proposition is valid, at least if f is a Frobenius endomorphism and
if �-adic cohomology with � �= q is used. Further, he mentions an even more far-
reaching conjecture on f for p > 0 whose validity would follow from the correctness
of Grothendieck’s “standard conjectures”. What are these standard conjectures?
Hartshorne describes the situation thus:

[[Serre 1960]] established [an] analogue of the Riemann hypothesis for the
eigenvalues of certain operators on the cohomology of a Kähler manifold,
using the powerful results of Hodge theory. This suggests that one should try
to establish in abstract algebraic geometry some results known for varieties
over C via Hodge theory, in particular the “strong Lefschetz theorem” and
the “generalized Hodge index theorem”. [[Grothendieck 1969]] optimistically
calls these the “standard conjectures”, and notes that they immediately imply
the analogue of the Riemann hypothesis. See also [[Kleiman 1968]] for a
more detailed account of these conjectures and their interrelations [Hartshorne
1977, 452].

On p.451, Hartshorne explains that Weil in his proof for the case of curves in
[1948] used the Riemann–Roch theorem for the statements concerning the ratio-
nality and the functional equation of the zeta function and the Castelnuovo–Severi
inequality for the Riemann hypothesis372. Hence, there are connections between
Weil’s proof strategy and the Hodge-theory employed by Serre, because the in-
equality of Castelnuovo–Severi (used by Weil) follows just from the Hodge theorem
[Hartshorne 1977, 368]. This was observed by Grothendieck in [1958]; this obser-
vation led him eventually to the standard conjectures. But they happened to be
not the last word on the Riemann hypothesis:

Much to everyone’s surprise, [Deligne] managed to avoid these conjectures
altogether. [ . . . ] In fact, the generally accepted dogma that the Riemann
hypothesis could not be proved before these conjectures had been proved [ . . . ]
probably had the effect of delaying for a few years the proof of the Riemann
hypothesis [N. Katz, review of [Deligne 1974], MR49#5013].

Katz credits Dieudonné with this “dogma”. In Récoltes et semailles, Grothendieck
criticises Deligne for disloyalty with the original program.

However, the standard conjectures were not the only idea that Grothendieck
drew from Serre’s [1960], in particular as far as the role of CT is concerned. In
Grothendieck’s plan, the concept of “motive” was to have an important task which
Deligne explains thus:

(Note que, si l’on remplace C par un corps fini Fq et f par le morphisme de Frobenius cor-
respondant, le diviseur f−1(E) est équivalent à q · E, le Théorème 1 est donc bien l’analogue
kählérien de “l’hypothèse de Riemann”.)” .
372More information on this can be found on p.368 of Hartshorne’s book. Katz in his review of

[Deligne 1974] (MR49#5013) indicates that Weil managed to prove some other special cases of
the conjectures later on.
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Let X be an algebraic variety over [a field] k algebraically closed. For
every prime number � prime to the characteristic, étale topology yields �-adic
cohomology groups Hi

et(X, Z	). If k is a subfield of C, on has comparison
isomorphisms

Hi(X(C), Z) ⊗ Z	
∼−→ Hi

et(X, Z	).

For k of characteristic > 0, there exists no functorial integer cohomology
yielding such isomorphisms. Nevertheless, for � variable, the Hi

et(X, Z	) have
a kind of ‘family resemblance’. [ . . . ]

The theory of motives is first of all an attempt to find a substitute for the
nonexisting integer cohomology which explains the family resemblance [373]
between the Hi

et(X, Z	) [ . . . ] One recognizes the Master’s hand in the idea
that the problem is not to define what a motive is: the problem is to define the
category of motives, and to uncover its structures. These structures should
allow us to prove the Weil conjecture following the lines of [[Serre 1960]]. See
[[Grothendieck 1969]]374 [Deligne 1998, 17].

The “motive” of a variety X is H∗(X) =
⊕

i Hi(X); it is an analog (with more elab-
orate structure) of Hopf’s homology ring (see 2.1.2) or Leray’s anneau d’homologie
from [1946a]. The history of the concept “motive” began probably in 1964. In a
letter to Serre dated August 16, 1964, Grothendieck explains this idea; see [Colmez
and Serre 2001, 173ff]. Serre notes later: “to my knowledge, this text is the first
in which the notion of motive appears (à ma connaissance, ce texte est le premier
où la notion de motif apparaisse” (ibid. p.275). Incidentally, Grothendieck in this
letter uses a formulation very close to that of Deligne quoted above according to
which the true problem is to define the category of motives.

And this problem of defining the category of motives is at the heart of the role
of CT for Grothendieck’s vision. Grothendieck developed an axiomatic character-
ization of the appropriate type of category and called them Tannaka categories.
A Tannaka category is an abelian category whose Hom-sets are even vector spaces

373According to [Cartier 2000, 31], Grothendieck uses in Récoltes et semailles a metaphorical
description of the problems of the air de famille, namely the picture of a lighthouse which can
never enlighten more than a narrow strip of the panorama at a time. Cartier goes on in citing
some authors who developed further the program of motives.
374“Soit X une variété algébrique sur k algébriquement clos. Pour chaque nombre premier


 premier à la caractéristique, la topologie étale fournit des groupes de cohomologie 
-adique
Hi

et(X, Z	). Si k est un sous-corps de C, on dispose d’isomorphismes de comparaison

Hi(X(C), Z) ⊗ Z	
∼−→ Hi

et(X, Z	).

Pour k de caractéristique > 0, il n’existe pas de cohomologie entière fonctorielle donnant lieu à
de tels isomorphismes. Néanmoins, les Hi

et(X, Z	) ont, pour 
 variable, un « air de famille ».
[ . . . ]

La théorie des motifs est d’abord une tentative pour trouver un substitut à l’inexistante coho-
mologie entière, expliquant l’air de famille entre les Hi

et(X, Z	) [ . . . ] On reconnaît la patte du
Maître dans l’idée que le problème n’est pas de définir ce qu’est un motif : le problème est de
définir la catégorie des motifs, et de dégager les structures qu’elle porte. Ces structures devraient
permettre de prouver la conjecture de Weil sur le modèle de [[Serre 1960]]. Voir [[Grothendieck
1969]]”.
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over Q; further, one has a concept of dualization375 and a tensor product376, pre-
served by Hom. “What was aimed at was a formalization of the notion of tensor
product of motives, corresponding, via the Künneth formula, to the product of
varieties (il s’agissait de formaliser la notion de produit tensoriel de motifs, cor-
respondant par la formule de Künneth au produit des variétés” [Deligne 1998, 18].
A standard reference on the subject is [Saavedra Rivano 1972]; however, this work
contains some errors which are corrected in [Deligne 1990].

The reason to chose this type of categories is that it is related to the theory
of representations of so-called proalgebraic groups377. One obtains a “dictionary”
of the form “the Tannaka category is semisimple if and only if the group has such
and such property” etc. Like topos theory, Grothendieck’s sketch of the theory of
motives can be seen as a continuation of the Erlangen Program. For very much like
Klein encodes a geometry in its transformation group, the universal cohomology
of a variety is encoded in a proalgebraic group.

One should note, however, that the project has so far not been completely
realized and that recent work rather tends to spoil illusions. This is related to the
morphisms of the still missing Tannaka category of motives: so far, one knows only
that algebraic cycles on the product of two varieties modulo an equivalence rela-
tion are candidates; but for the equivalence relation, one has multiple candidates,
namely rational, numerical, algebraic and homological equivalence. One conjec-
tured that there are so many algebraic cycles that all these equivalence relations
coincide; Grothendieck’s standard conjectures have actually a similar content. A
priori, however, one has different motives in each case; [Deligne 1994] spoils the
hope to get any further, and Uwe Jannsen points out that the category in question
cannot be expected to be semisimple.

375This might be the connection with the work of the japanese mathematician Tadao Tannaka
whose name was chosen for the categories: he was apparently concerned with a problem in
complex analysis which formally amounted to a similar dualization. I owe this information to
personal communication with Norbert Schappacher; it is difficult to find bibliographical evidence
for it—at least if one confines attention to the few papers by Tannaka mentioned in the Math-
ematical Reviews. I do not exclude that the name was chosen by Grothendieck at least partly
as a kind of acknowledgement since it was Tannaka who finally managed to have Grothendieck’s
1957 paper published in the Tôhoku journal (see 3.3.1.1).
376Categories with a tensor product (or rather: an internal product) occur in [Mac Lane 1963b,

43] (Categories with a multiplication, p.29; tensored categories, p.43); Mac Lane refers to [Bén-
abou 1963] and [Mac Lane 1965] (this latter work being a draft of AMS colloquium lectures
from 1963; the treatment of tensor products is to be found p.75ff). Further, the concept plays
a role in [Eilenberg and Kelly 1966] (see [Mac Lane 1976a]). Pierre Cartier told me in personal
communication that he was also about to introduce such a concept. Probably this is meant when
[Grothendieck 1957, 121] says in n.1 bis: “P. Cartier just found a satisfactory general formulation
for multiplicative structures in homological algebra which he will expose elsewhere (M.P. Car-
tier vient de trouver une formulation satisfaisante générale pour les structures multiplicatives
en Algèbre Homologique, qu’il exposera en son lieu”).
377In the case char = 0, these are projective limits of algebraic groups (which in turn are

algebraic varieties endowed with a group structure); the case char = p is more complicated.



4.3. Grothendieck’s methodology and categories 189

4.3 Grothendieck’s methodology and categories

As already stressed in the introduction of this chapter, one cannot conclude with
the mere observation that CT was of great importance for Grothendieck’s renewal
of the conceptual bases of algebraic geometry. The real challenge in the interpre-
tation of the compiled historical information is a philosophical one: why is this
so? The tasks of CT are numerous:

• CT allows for the accentuation of “relative” propositions;

• what is important is characterization up to isomorphism, and isomorphisms
are not automatically bijections in the sense of set theory (in the case of
schemes, for instance, they are not);

• through the concept of site, the definition of sheaves on a certain type of
categories becomes possible, and difficulties with the particular categories of
this type (to which practice it was formerly restricted) can be overcome;

• CT serves to define the concept of “spaces without points” (see 4.1.1.4), and
the vision of a “geometry without points” (see 4.1.2.3).

The accentuation of “relative” propositions was already present in Grothen-
dieck’s version of the Riemann–Roch theorem (see 3.3.3.5). [Grothendieck 1960a,
106] explains the motivation for being more interested in morphisms than in va-
rieties in isolation (Grothendieck himself uses the terms “absolute” and “relative”
here): this idea was born from the insight that one thinks often only erroneously
that a field is needed; in truth, it is sufficient to introduce a second ring B such
that the base ring A is a finitely generated B-algebra. See also [Gelfand and Manin
1996, 82]. [Hartshorne 1977, 89] explains the general aim of the relative approach:
to study properties of f : X → S under variation of S etc.

There is an important pattern in Grothendieck’s work that can be subsumed
under the maxim “enlarge the perspective, take into account things originally left
aside!” (the larger framework is most often the right framework). This applies in
the following situations of conceptual development:

• the passage from module categories to abelian categories;

• the passage from polynomial rings over fields to arbitrary commutative rings;

• the passage from the traditional sheaf definition to the concept of site;

• the passage from the derivation of functors to derived categories.

I suspect that this list is by no means exhaustive. The maxim can be described as
a denial of the alleged primitivity of the concepts originally taken for primitive—
thus modifying the foundation of the respective discipline, theory, method.

Gelfand and Manin stress that Grothendieck gave new definitions of certain
base concepts to ensure certain functors to “behave well”:
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Good categorical properties of [ . . . ] functors [between algebra and ge-
ometry] (e.g. equivalence) are so important that to save them one is often
forced to change old structures or to introduce new ones. This is how affine
schemes, nuclear vector spaces [ . . . ] and objects of derived categories ap-
peared in mathematics [Gelfand and Manin 1996, 76].

Hence, criteria motivated by CT would be the driving force for changes in the
conceptual framework. Concerning affine schemes, Gelfand–Manin’s statement is
approved in section 4.1.1.2; concerning derived categories, see section 4.2.2. The
maxim of the categorial properties could, following the key idea of the Tôhoku
paper, also be expressed thus: Grothendieck aims at making analogies complete.
By the functorial sheaf definition in the Tôhoku paper, the analogy between de-
rived functors of Cartan and Eilenberg and sheaf cohomology was made complete;
the concept of scheme played the same role for the analogy between algebraic
geometry and commutative algebra, and the concept of Grothendieck topology
for the analogy between Galois theory and the theory of coverings378. Such a
completion of an analogy was in each case achieved by determining first the cat-
egories corresponding to the mathematical theories involved and then modifying
one of them as much as necessary to obtain a pair of equivalent (or dual equiv-
alent) categories—whereby problems in one category become solvable by transfer
to the other category, thus generalizing and perfecting the basic idea of algebraic
topology379.

In Grothendieck’s practice, conceptual clarification is of greater importance
than the actual working out of the proofs. Most proofs are omitted in the Tôhoku
paper; for instance, there are only fragmentary proofs of the two main results:
that the chosen conceptual framework is sufficient for the aim of the paper (the
application of the calculus of derived functors) and that sheaves fall under this
framework. What is omitted is what could be obtained by a mere unfolding of the
conceptual framework (compare the case of schémas de diagrammes, as discussed
in 3.3.4.2, or of equivalence of categories, in 3.3.4.3). Bénabou points out a similar
situation in Grothendieck’s work on fibered categories and descent in SGA 1:

The proofs are long and tedious, but straightforward verifications, mostly
left to the reader because they would add nothing to our understanding of
fibrations, and moreover one is convinced from the beginning that the result
has to be true [1985, 29].

A similar remark can be found in [Grothendieck 1955a] Introduction, p.1f: “As
the proofs of most of the facts stated reduce of course to straightforward verifica-
tions, they are only sketched or even omitted, the important point being merely a
consistent order in the statement of the main facts”.

378The last mentioned analogy is discussed for example in [Mac Lane 1989, 6].
379By mentioning nuclear vector spaces, Gelfand and Manin claim that Grothendieck already

in his dissertation [1955b] was guided by such a maxim; this claim remains for further historical
elucidation.



4.3. Grothendieck’s methodology and categories 191

Hence, the “right” concept is a concept which yields the proof immediately
once it is unfolded (proof by “check”)—and the conviction that the result is true
does not come from the proof alone, but as well from experience with numerous
similar verifications (technical common sense). This is one more case where onto-
logically oriented reductionism does not explain mathematical insight: the insight
into a proof is usually not achieved just by a decomposition into elementary steps,
but by transition to appropriate levels of synthesis380.

380Eilenberg and Steenrod had similar aims of making proofs intellegible by their axiomatization
of homology theories, see 2.4.1.1. Also the proof technique of commutative diagrams has the aim
of producing an object which remains only to be unfolded to get the proof: “in the case of many
theorems, the setting up of the correct diagram is the major part of the proof” (see 2.4.2). Hence,
we do not discuss here Grothendieck’s personal philosophy. I come back to the epistemological
implications of this point of view in 7.4.2.



Chapter 5

From tool to object: full-fledged
category theory

There has been considerable internal development of CT from the beginning to the
end of the period under consideration, often in interaction with the applications.
While particular conceptual achievements often are mentioned in the context of
the original applications in chapters 2–4, it is desirable to present also some di-
achronical, organized overview of these developments. This will be done in the
present chapter. Some parts of this chapter have the character of a commented
subject index ordered according to systematic criteria and hence are more appro-
priate for reference purposes than for direct reading; but others contain important
bricks in the wall of my overall interpretation.

In section 5.1, I will summarize the history of some concepts which have
already “been there” before category theory and were transformed under the in-
fluence of CT. It is natural to begin the chapter with such a summary since the
influence was mutual, which means the transformations to be discussed had effects
on the conceptual development of category theory. In sections 5.2, 5.3 and 5.4,
I will describe in more detail how the study of some concepts central to CT it-
self developed: functors, objects, and categories, respectively. As an intermediate
step, particular attention is paid in section 5.3.1 to the relation between category
theory and the concept of structure; this analysis leads to the conclusion that it
is not convincing to describe category theory as a mere theory of structured sets
and structure-preserving mappings. An alternative interpretation is developed in
section 5.3.2; here, the stress is put on the fact that the only information exploited
in category theory is the algebra of composition of arrows. To sum up, this chapter
is both a summary of the conceptual aspects of the history discussed so far and
a first tentative outline of a “philosophy” of category theory, focussing on “what
categorial concepts are about”.
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5.1 Some concepts transformed in categorial language

It is commonplace that for mathematical thinking it is crucial to define clearly
what one is speaking about. Less obvious, but in its turn very important for the
progress of mathematical thinking, is another aspect of the activity of defining:
the modification of definitions. Such modifications occur frequently in our con-
text. Closer inspection of these acts of modification reveals the following fact:
changing one’s definition is not done to get a different, more reliable description
of some already given object, to come in some sense closer to the truth. Rather,
by changing definitions one tries to get a mathematical concept better adapted to
the problems it is intended to be applied to, or a mathematical problem better
adapted to the methods which are at one’s disposal for its solution. Unfortunately,
this fact is veiled by a common façon de parler which has it that the new definition
is the “right” one.

In what follows, it will be outlined how CT contributed to the transformation
of some notions central to its mathematical applications, as treated in the three
preceding chapters. In neither case do I aim at a complete analysis of the history
of the respective concept’s modifications; I do so only insofar as an interaction
with CT took place.

5.1.1 Homology

First of all, the fact should be stressed that the concept of homology (and coho-
mology) was absolutely central in the mathematical applications of CT presented
so far. In view of the question discussed in the introduction whether CT is suf-
ficiently important to deserve a historical monograph at all, one could interpret
this fact somewhat maliciously in a way, that in reality not CT but the concept
of homology was the “powerful tool” that proved to be transferable to unexpected
contexts, and that CT had merely a subordinate or serving function in connection
with questions of homology (in particular such transfers of homology as a tool
in different contexts). This impression is not completely wrong but is at least
partially due to the choice of CT’s applications discussed so far; by and by, there
emerged also important functions of CT not related to homology.

We have already investigated some transformations of the concept of ho-
mology; we saw first how combinatorial invariants have been transformed into
algorithmically defined groups in algebraic topology, the different methods of cal-
culation of these groups giving rise in turn to an axiomatic treatment of homology
theories. Moreover, in the context of duality theorems among others, the concept
of cohomology was introduced (cf. n.90) which allowed the method to be employed
outside algebraic topology: its influence expanded first to pure algebra, then to
algebraic geometry. To recapitulate the role of CT in these changes it is useful to
pick out three more special concepts related to homology (namely complexes, co-
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efficients and sheaves) and to cut up the findings along the transformations which
these concepts suffered by the application of categorial language381.

5.1.2 Complexes
When speaking nowadays of a “chain complex”382, one thinks of a decreasing
sequence of abelian groups Gi connected by homomorphisms di : Gi → Gi−1

with di−1di = 0. This concept, sufficiently general in particular for the purposes
of homological algebra (with abelian groups replaced by objects of an arbitrary
abelian category), emerged historically from much more special concepts. I will not
try here to give a complete history of these conceptual transformations but intend
merely to provide evidence for what has been said already repeatedly, namely that
the stress on the now usual concept of chain complex is related to the stress on
categorial language and method.

As already pointed out in section 2.1.4, Walther Mayer is to be credited with
the first definition of the modern concept (see for example [Dieudonné 1989, 39]).
In [1929, 2], Mayer assumes the groups involved to be free (axiom III); however,
Mayer does not explicitly fix a basis but says merely “Let there exist a system (es
gebe [ . . . ] ein System)” and so on (p.2); moreover, he considers something like a
base change (Satz II p.3)—a feature which is central to his methodology.

There have been alternatives to Mayer’s concept. A somewhat different con-
cept, called “abstract383 cell complex”, is defined in [Tucker 1933]; Tucker cites
Mayer (p.194) and stresses the difference between Mayer’s concept of complexes
and his own: the existence of a relation <is on the boundary of> between cells (the
concept of cell is treated as undefined). Tucker motivates the newly introduced
relation with geometrical considerations. Lefschetz in [1942] opts for Tucker’s cell
complexes and says:

Other general types have been considered in the literature notably by
[[Newman 1927]] and [[Mayer 1929]]. Newman’s type is designed chiefly to
preserve as many as possible of the properties of polyhedra and for many
purposes it is decidedly too “geometric”. In Mayer’s type on the other hand
only the properties which flow from the incidence numbers are preserved and
the type is too “algebraic”. Tucker’s type may be said to occupy a reasonable
intermediate position [Lefschetz 1942, 89].

381The original version of the book contained two more such case studies, namely concerning
inverse and direct limits on the one hand and groupoids on the other, the latter concept consti-
tuting an example of a concept not belonging in the homological context. In both cases, a more
complete account was desirable (and will be published elsewhere).
382For the origin of the term “chain” (Kette), see [Alexander 1920].
383In the case of simplicial complexes, too, one distinguishes simplicial complexes realized as

subspaces of Rn (euclidean complexes, [Eilenberg and Steenrod 1952, 72]) from abstract simplicial
complexes (ibid. p.59, [Hilton and Wylie 1960, 41]). Eilenberg and Steenrod think of abstract
simplicial complexes when saying (on p.181 of their book) that the development of simplicial
complexes goes back to [Alexander 1926]—while [Seifert and Threlfall 1934, iii] think certainly
of euclidean complexes when saying that the concept of simplicial complex had been introduced
by Brouwer.
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(I do not discuss Newman’s type). Lefschetz’ assessment corresponds to another
statement which he made about Mayer’s work: “this author went to the extreme
of abstraction” [1999, 558]. Also [Eilenberg and Mac Lane 1942a] use (star finite)
complexes in a sense close to Tucker’s, in agreement with the fact that this work
has strong ties to Lefschetz’ book.

In [1945, 283], however, they use chain and cochain complexes “in the sense
of W. Mayer” composed of free groups without a fixed basis; they assert that the
difference between Mayer and Tucker is marked precisely by the fixing of a basis
(they only refer to [Lefschetz 1942])384. On p.284, Eilenberg and Mac Lane say:

Our preference for complexes à la Mayer is due to the fact that they seem
to be best adapted for the exposition of the homology theory in terms of
functors.

This suggests that Mayer’s concept has been chosen here chiefly with respect to
matters of exposition; indeed, the concept of complex used in [1942a] was an
obstacle for the emphasis on functors because of its base dependence.

In [Mayer 1938], Mayer even drops the condition that the groups be free and
simply studies “group systems” (“Gruppensysteme”) composed of arbitrary abelian
groups. This terminology is mentioned in [Eilenberg and Steenrod 1952, 124]
(without explicit reference); [Kelley and Pitcher 1947, 685] mix the terminology
(and prepare the definite usage) when saying that the groups involved in a “Mayer
chain complex” are not necessarily free.

The modern concept of chain complex is crucial for the entire project of
[Eilenberg and Steenrod 1952]; it seems to furnish the conceptual framework
needed to decompose the abstract process of formation of homology theories into
clearly separated conceptual steps. This is all the more true for homological alge-
bra in the sense of Cartan and Eilenberg; see 3.1.1.3.

Categories of chain complexes intervene already in [Eilenberg and Mac Lane
1945, 284] (they are used for the definition of the homology functor); in [1953],
they again make use of such categories (see also [Dieudonné 1989, 100ff]). Such
categories later are used in the theory of derived categories (see 4.2.2).

5.1.3 Coefficients for homology and cohomology

The concept of coefficients for homology and cohomology had been transformed
already in various ways before the work of Eilenberg and Mac Lane. Initially, only
integer coefficients in simplicial homology were considered, and they really had
a combinatorial meaning—the coefficients, resp. incidence numbers, indicate the
multiplicities of the various simplexes in the composition of the complex whose
homology is calculated; chains are formal linear combinations of simplexes with
integer coefficients. As [Mac Lane 1978, 11] puts it: “before 1927, topology really
was combinatorial: a chain in a complex was a string of simplexes, each perhaps
384Also [Eilenberg and Steenrod 1952, 156] call a chain complex with fixed bases an “abstract

cell complex”).
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affected with a multiplicity (a coefficient), and the algebraic manipulation of chains
was something auxiliary to their geometric meaning”. During the conceptual de-
velopment, this approach was modified in several respects:

• One started to study coefficients other than integer ones; for example, [Pon-
trjagin 1931] took finite cyclic groups as groups of coefficients. [Mac Lane
1976a, 6] has it that coefficients mod 2 have been used in [Veblen 1931], and
coefficients mod p by Alexander (without reference). In 2.1.2.2, more steps
in this directions are described.

• Methods of calculation of homology other than the simplicial method have
been introduced; in these methods, the coefficients play another role.

• In the case of cohomology, the role of the domain of coefficients A is no longer
to yield scalars for formal linear combinations; instead, cochain groups Cn

have homomorphisms Cn → A as their elements, where Cn are the chain
groups. Consequently, [Mac Lane 1976a, 6] puts the term coefficients in
quotation marks in this context; one speaks often (and correctly) about “co-
homology with values in A”.

As has certainly become clear in chapter 2, these modifications cannot be treated
independently of each other in a historical account since they were all linked
together in their historical development. Moreover, they interacted obviously with
the corresponding modifications of the concept of complex (see above).

In the axiomatic approach of Eilenberg and Steenrod, the concept of coef-
ficient was modified insofar as the concrete procedures of calculation were ruled
out as much as possible; the proofs of the former theory relying on the procedures
of calculation shrink to “existence proofs” for the models of the axiom system.
The coefficients assume a new role (opposed to their traditional role in the com-
binatorial situation): they can be reconstructed from the axioms by applying the
homology functor to certain spaces (p.17). To this end, Eilenberg and Steenrod
first of all fix a base point P0 in the topological space under consideration and
obtain as the group of coefficients the group H0(P0). But one can even avoid
fixing a base point by employing a certain construction similar to an inverse limit.
More precisely, Eilenberg and Steenrod take a family of groups Gα indexed by the
elements α of a set M and connected by isomorphisms πα

β ; from these data, they
construct a group G in a way similar to the Eilenberg and Mac Lane construction
of inverse limits. Now, as we saw in section 2.2.6, Eilenberg and Mac Lane car-
ried out such a construction only for directed sets of indexes—actually very much
like Eilenberg and Steenrod themselves when discussing the concept of inverse
limit385. In the present case, however, M is chosen to be the set of all one-point
spaces in the corresponding category of topological spaces, and the Gα are taken
to be the groups H0 belonging to these indices; as expected, G is isomorphic to
every Gα and can hence serve as the group of coefficients. Incidentally, Eilenberg
385on p.212ff; this might actually be the reason that in the present case they do not use the

terminology of limit group.
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and Steenrod come close to a generalization of the limit concept in the sense of
Kan, however trivial their case might be.

The most far-reaching conceptual transformation of the concept of coefficient
of a cohomology theory arose when sheaves were introduced. It was at this stage
that the manipulation of coefficients became the main occupation of the whole
theory, until the abelian variables of homological functors became considered as
the principal argument of these functors (see 3.4.1). This transformation can be
made visible by comparing the uses made (or not made) of the term “coefficient”
at different historical stages of sheaf cohomology:

• Leray speaks about “homology module relative to a sheaf (module d’homologie
relatif à un faisceau)”.

• In the Séminaire Cartan 50/51, p.16-06, one reads:

Hq
Φ(X , F ) [is] called the qth module of cohomology of the space X ,

relative to the family Φ and the sheaf of coefficients F (or the module of
Φ-cohomology of dimension q of the space X , with coefficients in F )386.

This means that the coefficients are just the elements of the espace étalé
(which is set-theoretically the disjoint union of the modules Fx). This dis-
tinguishes Cartan’s point of view from the “local coefficients” in the style
of Steenrod–Leray where the particular modules were stressed while Cartan
took the sheaf as a whole as his point of departure (see the next section).

• Serre speaks about “cohomology with values in F (cohomologie à valeurs dans
F )” (in agreement with the intuitive meaning of the coefficients of cohomol-
ogy mentioned above).

• Today, experts seem to speak about “the coefficient” and mean the sheaf as
a whole as a kind of parameter, i.e., with another sheaf, one obtains another
cohomology group; the sheaves are the coefficients (namely the variable of the
cohomology theory; see section 3.4.1). “Elements” of the sheaf (considered
as a set) do not play any role for the calculation of this cohomology (since
the procedure of derivation of functors is used). The original meaning of the
term “coefficient” disappeared.

The reason for this transformation is probably that the investigation
of sheaves may lead to cases in which F “has no elements” (see 4.1.1.4; a
sheaf defined on a site a priori has no underlying set); at the latest in this
situation, à coefficients dans F is to be understood as an atomic sentence
needing no further elucidation.

386“Hq
Φ(X , F ) [est] appelé le q-ième module de cohomologie de l’espace X , relativement à la

famille Φ et au faisceau de coefficients F (ou encore le module de Φ-cohomologie de dimension
q de l’espace X , à coefficients dans F )”.
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5.1.4 Sheaves
When comparing the different sheaf definitions, one should pay attention to what
is treated as the originally given object in the different cases. Leray’s approach
(3.2.1) looks as if the particular modules had been there first and form, so to say
by accident, a sheaf; Cartan (3.2.2.2) rather stresses the entire object which is
the sheaf, and the module structure on the fibres comes “belatedly” (the fibres are
“endowed with this structure”). Cartan’s distinction of two modes de définition de
faisceaux relies on this opposition. The sheaf definition of [Serre 1955] is equiva-
lent to the one of Cartan–Lazard; however, Serre has a more algebraic approach
(instead of saying that the fibres of the topological space bear an algebraic struc-
ture, he thinks, very much like Leray, of a procedure in which the sets bearing the
algebraic structure are endowed with a topology). But in principle, a sheaf “is”
still a topological space.

Grothendieck in the Tôhoku paper (3.3.3.1) starts with the concept of presheaf
(a functor from the category Open(X)op to a category) and treats sheaves as a
special kind of presheaf.

In SGA, the concept is submitted to various modifications:

• Formerly, the only domain category (considered was the category of the open
sets of a topological space with inclusions; now, this category can be replaced
by another category (more precisely, domain categories with the same class
of objects but other types of arrows are admitted). The motivation for this
enlargement comes from a conceptual problem of algebraic geometry; see
4.1.2.2.

• This leads to the general definition of a type of categories (called sites) which
are appropriate as domain categories of sheaves. The central step is to charac-
terize inclusion, intersection, and union in arrow language; see again 4.1.2.2.

• Instead of treating sheaves as certain functors between previously given cat-
egories, they are directly treated as objects of an appropriate (functor) cat-
egory; one obtains but one example of a general type of categories called
(Grothendieck) toposes. See 4.1.2.3.

• Giraud develops a characterization of Grothendieck toposes as categories
which forgets about their origin as categories of sheaves; see again 4.1.2.3.
This is an important step towards the realization of Grothendieck’s vision to
treat the toposes (and not the topological spaces) as the central objects.

Grothendieck’s concept is the “right” concept since unlike the espace étalé-concept
it admits all these generalizations and conceptual changes.

Finally, continuing the work of Giraud, the concept of Grothendieck topos is
transformed into the concept of elementary topos by Lawvere and Tierney; this
transformation will be discussed in section 7.3.1. The definition of the former
concept is strongly synthetic (a topos is a category of sheaves on a site; hence one
has to define first the concepts of site and sheaf); for this reason, it does not really
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grasp the feeling that the objects which are the interesting and basic ones are the
toposes (and not the sites, see 4.1.2.3); a level switch calls for a new definition of
the concept. The definition of the concept of elementary topos is synthesized from
elementary concepts of CT.

5.2 Important steps in the theory of functors

In many respects, category theory is best described as the theory of functors. At
first glance, this does not look like a very good description, since formally one
has to define the concept of category before one can define what a functor is.
Historically, however, this was precisely how Eilenberg and Mac Lane arrived at
the definition of the concept of category: they knew already (informally) what
functors are; they knew situations in which they encountered objects which share
some features and which they wanted to study with the help of a general concept
relying on these features. In other words, they wanted to define (formally) the
concept of functor; in trying this, they felt the need to introduce the concept
of category first. That means also that in order to check whether the formal
definition of the concept of functor meets the intended model, one has to learn first
how the concept was intended to be used—and its uses are located on a technical
level. I.e., without knowing the technical context, you cannot appreciate the
definition. Compare the use made in section 1.2.1.2 of a corresponding quotation
from Peter Freyd’s introduction to his book [1964]; more on the Eilenberg–Mac
Lane interpretation of the relation between categories and functors can be found
in section 5.4.2.

Much information on how the concept of functor was studied, which instances
of the concept were stressed, and which conceptual tools were created for this
study is dispersed throughout the book (compare section 4.1.1.3 on the concept
of a representable functor, for instance); in what follows, I will try to collect some
particularly important points.

5.2.1 Hom-Functors

Historically, the construction of a Hom-functor occured first in situations where
objects A and B are sets bearing a certain structure, and the set Hom(A, B) of
all morphisms from A to B bears a structure of this kind, too (or, to put it in
more neutral terms, is object of the same category). For instance, Peano for given
vector spaces A, B considers Lin(A, B) as a vector space, see [Krömer 1998]. The
earliest definition of a Hom-functor is in [Eilenberg and Mac Lane 1942b], and it
is expressedly called an “important functor” there. Due to the special situation in
[1942b] where everything is done in Grp, and in view of the intended “specializa-
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tion” of the Hom-functor to the character group functor with Pontrjagin’s duality
theory in mind, Eilenberg and Mac Lane insist that Hom(G, H) regarded as a set
bears the structure of a topological group387.

In [1945, 243ff], they generalize this idea, obtaining the functors Map(X, Y )
in Top and Lin(B, C) in the category B of Banach spaces. They insist on showing
that these two functors actually have values in the corresponding category—i.e.,
that Map(X, Y ) is a topological space and that the mapping function of the functor
yields continuous functions (p.243f) in the first case, and that Lin(B, C) is a
Banach space and the mapping function of the functor yields contractions relative
to the supremum norm388 in the second case.

A Hom-functor plays a central role in [Cartan and Eilenberg 1956], too, since
it is one of the two functors which serve to illustrate the procedure of derivation.
The authors refer to it as a “basic example” (p.18). Again, the object Hom(A, C)
is a set with structure: in the Cartan–Eilenberg book, all categories are categories
of modules; more precisely, functors are defined exclusively on the category of, say,
Λ1-modules with values in the category of, say, Λ-modules (where Λ1, Λ are rings;
p.18). Since this implies the possibility to change the scalar ring, the constructions
Hom(A, C) and A ⊗ C as given in [Cartan and Eilenberg 1956] (namely as Z-
modules, i.e., abelian groups; ibid. p.20f) are indeed examples of functors in the
sense of Cartan and Eilenberg.

The original idea of [Eilenberg and Mac Lane 1942b] to discuss group-valued
functors Hom(G, H) for groups G, H is developed further in two different direc-
tions:

• One of the defining properties of additive and abelian categories is that for
two objects A, B there is a structure of abelian group on the set Hom(A, B)
(compare, for example, [Grothendieck 1957, 126]). This is related to the fact
that the following things are needed in such a category: a concept of exact
sequence, and one of chain homotopy (the latter concept being needed in the
proof of the fact that the values of the derived functors do not depend on the
chosen resolution; compare [Cartan and Eilenberg 1956, 82f]). Consequently,
the idea that Hom should be a functor from one category A to the very same
category A is moving to the background—since A is not always the category
of abelian groups in this context.

387They indicate the definition of the group composition but not of the topology; [Weil 1940,
99f] defined this topology in the case of the character group, and in [Eilenberg and Mac Lane
1945, 244], finally, the definition of the topology in the general case is given.
388In [Eilenberg and Mac Lane 1945], the arrows of B are the contractions relative to the supre-

mum norm, see ibid. p.240. They argue that this makes the isometric mappings the equivalences
(i.e., in today’s language, the isomorphisms in the sense of CT) of this category while in the
larger category of Banach spaces and linear operators, the isomorphisms in the sense of linear
algebra would be the equivalences.
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• In other contexts, the existence of a so-called “inner hom object” is discussed;
for objects A, B, Hom(A, B) is itself object of the same category389, hence
not necessarily an abelian group.

This means that in the early special case considered in [Eilenberg and Mac Lane
1942b] two specializations of the general concept orthogonal to each other are con-
tained and meet accidentally, so to say. A unification is attempted by [Mac Lane
1965] (see also [1963b, 44]) employing the concept of bicategory390. A Hom-functor
in all cases has values in such a bicategory. This was pursued further in the theory
of Tannaka categories (see section 4.2.3).

5.2.2 Functor categories

The fact that functors form a category is noted for the first time in [Eilenberg
and Mac Lane 1945, 250]; compare section 2.3.1.1. Kan and Godement regard the
category of simplicial sets as a category of functors (see 2.5.1). Grothendieck men-
tions categories of functors (with small domain categories) on p.125 of the Tôhoku
paper. But both in his paper and in the Eilenberg–Mac Lane paper, a more au-
dacious construction was alluded at, namely the “full” category of functors having
(all) the arrows of Cat as its objects. Grothendieck says “composition of functors
formally behaves like a bifunctor”; the quite similar account of Eilenberg and Mac
Lane is reproduced in section 6.3.1. The discussion of the set-theoretical difficul-
ties with this construction (the possible applications of which are not explicitly
mentioned in the two papers) is described in section 6.4.4.1.

Categories of functors are important in the context of the full embedding
theorem (see 3.3.4.4). In SGA, they are chiefly present in the form of categories of
sheaves (toposes; see 4.1.2.3) and hence serve a central purpose in Grothendieck’s
program.

5.2.3 The way to the notion of adjoint functor

As pointed out in 2.5.2, the concept of adjoint functor was defined for the first
time by Kan in 1958. This is sometimes seen as astonishingly belated introduction
of a concept which since became very important. In the following section, I will
discuss this judgement of punctuality methodologically; this done, I will try to
show that in the case of instances of adjunctions already studied before Kan, the
introduction of the general concept would not have been helpful.

389[Gelfand and Manin 1996, 105] list some categories having such objects but indicate no
general criterion; the issue seems to be related to the adjunction ⊗/Hom. The inner hom object
is one of the six opérations (see section 4.2.2); [Deligne 1998, 17] outlines the role played by the
concept in the construction of a notion of homology.
390In the cited papers, this term denotes a certain kind of categories with multiplication, not

to be confounded with the bicategories of [Mac Lane 1950]. Perhaps Mac Lane thought that it
would be useful to give a new sense to a nice terminology which became more or less obsolete in
the original sense with the advent of the theory of abelian categories.
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5.2.3.1 Delay?

The thesis of the delay was advanced by Mac Lane: “in retrospect [ . . . ] it is
strange indeed that it took 15 years from the introduction of categories [ . . . ] to
the introduction of adjoint functors” [1978, 21]. However, this point of view is
contingent; for example, Bénabou is, according to personal communication, con-
vinced to the contrary that the concept made its appearance astonishingly early.
I suppose that he comes to this conclusion because the context where the concept
turned out to be particularly fruitful (“internal” category theory) was not in sight
by 1958—while those drawing the opposite conclusion seem to take precisely the
relevance of the concept for the development of this context as a sufficient moti-
vation (and one available from the beginning) for the introduction of the concept
(see hereafter). Now, if the point of view that there was a delay is contingent, one
has to ask which purpose is pursued by those who utter it. For example, Corry
takes up the question as follows:

[ . . . ] Mac Lane has claimed that several particular cases of adjoint func-
tors were known well before Kan’s definition of the general concept in catego-
rial terms. [ . . . ] However, many years elapsed between the particular work
on these examples and Kan’s general definition, although categories were for-
mulated already in 1945. Can this delay be sensibly explained? [Corry 1996,
371].

Corry then rephrases some explanations given by Mac Lane in [1971b, 103]. Since
Corry takes the superiority of CT over Bourbaki’s structures as his point of de-
parture, he concentrates on the point in Mac Lane’s argumentation that Bourbaki
missed the concept of adjoint functor because of his unfortunate definition of the
concept of universal problem. As Jean-Pierre Marquis suggested in personal com-
munication, the fact that Mac Lane repeatedly stressed how astonishing the delay
is could ultimately indicate that he regretted having missed the concept in his
early work with Eilenberg.

The point of view that there was a delay can be accentuated thus: during a
certain period of time, the possible step from the particular cases to the general
concept was not taken although the necessary expressive means were available, al-
though the general concept would subsequently become identified as a key concept
in the (horizontal) development of CT, and although examples of adjunctions were
investigated and used. It is by these “althoughs” that the fact becomes astonishing
and asks for an explanation. I will discuss them one by one.

The fact that the necessary expressive means were available is certainly not
a powerful argument. When trying to use the fact that the concept of adjoint
functor turned out later to be a key concept in CT in order to lend support to
the thesis of delay, one apparently sees CT as a Sleeping Beauty awakened only
by the introduction of its key concept; and one feels allowed to ask, consequently,
why this key was not found during all the years before. If one considers instead
the context of application where the concept actually was formulated for the first
time, this scenario becomes debatable. For first of all, it was not introduced to give
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rise to an internal development of CT, and secondly, nothing in these applications
was achieved with delay: Kan’s applications became actually only possible after
the work of Eilenberg–Zilber. What stays in need of consideration is the third
observation: in retrospect, there have been other contexts in which the concept
could have been formulated before Kan; why did not this happen?

Were there really situations in the work with functors before Kan in which
a kind of inversion of functors would have been helpful? The idea of transport of
structure is present in algebraic topology from the very beginning (see 2.6), but not
that of a there and back transport. I do not know any substantial (even implicit)
discussion of adjoints of the homology functor and the like. This notwithstanding,
the situations ultimately giving rise to the introduction of the concept came from
(other parts of) algebraic topology. This leads [Mac Lane 1989, 3] to the assertion
that the “most immediate adjoint functors [ . . . ] were so trivial that they would
hardly be named” (I would say, they are not sufficiently resistant) while the two
key instances of Kan (the adjunctions between loop and suspension, and between
realization of a simplicial set and the functor sending a space into its singular
complex) do impose the concept. This question of resistancy will be discussed
below.

To sum up, the idea of a delay is completely ahistorical. The concept is
conceptually (systematically) on a low level and came insofar historically “late”.
But what is astonishing about this? This is precisely the difference between a
systematic and a historical development!

5.2.3.2 Unresistant examples

By resistancy, I understand the following: according to [Mac Lane 1976a, 33f],
it was important for the explicit discussion of “naturality” (see 2.2.5) that one
became confronted with situations where this naturality is not obvious. “Delays”
in the introduction of central concepts (or, more precisely, of concepts subsequently
considered as central) are sometimes due to the fact that known examples are “too
trivial” to necessitate the search for an underlying concept. [Mac Lane 1989, 3]
outlines this in the case of the concept of adjoint functors (see above), McLarty
in the case of the concept of cartesian closedness391.

One such “unresistant” example is given by free constructions (being adjoint
to the corresponding forgetful functors). These constructions and their universal
property were obviously of interest already before Kan’s contributions, also in the
context of CT: [Eilenberg and Mac Lane 1942a, 763] discuss free groups (see 2.2.5);
implicitly, they search for resolutions (see n.114). The earliest characterization in

391“the category of sets is cartesian closed. [This fact], largely because it is trivial in itself,
[ . . . ] was not a source of the idea of adjunction, it was not even the first example of cartesian
closedness” [1990, 371f]. McLarty then explains that Lawvere arrived at the concept during the
attempt to characterize Cat and that Eilenberg and Kelly found it in continuing Kan’s work on
simplicial sets. McLarty tends to stress that the motivation for the concept did not come from
set theory.
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diagram language of the concept of free group is contained in [Mac Lane 1950] (see
2.4.3). The universal mapping property of free groups is mentioned in [Eilenberg
and Steenrod 1952, 133].

Didactically, this example of an adjunction is so to say a “standard exam-
ple”392: more precisely, the concept of adjoint functor is easily explained using the
universal mapping property of the base of a free module393. However, this means
at the same time that the general concept does not explain anything in this case
(rather, the general concept itself in some sense is explained by the example)394.

Another unresistant example is the adjunction of a tensor product to the
Hom-functor available in certain categories. This example is actually very old;
[Mac Lane 1981, 23f] quotes [Gibbs and Wilson 1901, 272] (“[the tensor product]
of two vectors is the most general product in which scalar multiplication is associa-
tive”) and points out that this is the content of the universal property of the tensor
product. [Eilenberg and Mac Lane 1942a, 788] indicate the corresponding isomor-
phism in lemma 18.2; a special case of this lemma is used to obtain a formulation
of the universal coefficient theorem more appropriate for calculations (theorem
33.1). Obviously, a general concept would not have been of great use here (insofar
as the universal coefficient theorem depends on the particular functors).

This type of isomorphism plays a certain role in [Cartan and Eilenberg 1956]
(see p.119, 165, 341, 345f); Cartan and Eilenberg speak about “associativity for-
mulæ”, in agreement with Mac Lane’s interpretation of the Gibbs quotation. It is
uncertain whether this case considerably increases the gain to be expected by an

392In many presentations of CT, the functors intervening in the definition of adjunction are
labelled F and U , for free and underlying.
393This “universal mapping property” is the well-known property that the homomorphisms

defined on a free module M are determined by the values on the base A where these values can
be chosen arbitrarily. One can write down this property as the commutative diagram

A ��

���
��

��
��

� UM

Uψ

���
�
� M

ψ

���
�
�

UN N

where U is the forgetful functor from the category of modules to Set (this expresses the arbi-
traryness of the choice) and ψ : M ��� N is a uniquely determined module homomorphism. In
this situation, a functor F : Set → Modules can be introduced such that FA is free with base
A; this functor is called (left) adjoint to U . Indeed, to any arrow in Hom(A, UN) corresponds
an arrow in Hom(FA, N) and conversely, because of the above diagram.
394For this reason, I find it misleading or at least exaggerated when [Barr and Wells 1985, 50]

claim that the fact that F as defined in the preceding note is left adjoint to the underlying functor
is contained already in the first chapter of [Cartan and Eilenberg 1956]. It is true, the construction
FA is actually present in [Cartan and Eilenberg 1956] (p.5; they write FA and are mainly
interested in the case that A is itself a module); but instead of discussing the homomorphism
A → FA, they rather discuss the homomorphism FA → A. Now, this homomorphism is obtained
by virtue of the universal property from the identity homomorphism A → A; but the fact that
the base of a free module has indeed this property is only used, not proved. Cartan and Eilenberg
are exclusively interested in the exact sequence 0 → RA → FA → A → 0 (in view of projective
resolutions; for more details, see 3.1.1.3).



206 Chapter 5. From tool to object: full-fledged category theory

introduction of the general concept of adjunction for the Cartan–Eilenberg book.
Such a gain might be looked for in the reduction of “dual” arguments, as Kan sug-
gests by discussing the “duality” (adjointness) of the functors; but Buchsbaum’s
more systematic approach certainly was of greater relevance.

Bourbaki, in the appendice of the Algèbre Multilinéaire of 1948, gives the
Produit tensoriel des modules as an example for the solution of a universal problem.
Hence, it is acknowledged that the tensor product represents a special case of a
more general situation (which will later be called adjunction of functors). Kan used
this example in a didactical manner; in this case again, the particular situation
rather clarifies the concept of adjunction than being clarified by an employment
of this concept.

However, the example is later on of essential relevance for the further develop-
ment of the conceptual system of CT, namely in the theory of Tannaka categories
as the point of departure of a natural abstraction: In [Saavedra Rivano 1972, 51],
the Hom-object is constructed as a functor adjoint to ⊗, referring to [Eilenberg
and Kelly 1966] (see also 4.2.3).

5.2.3.3 Reception in France

Despite Grothendieck’s implicit discussion of the notion of adjunction (see 3.3.4.3),
the French community when starting to use the concept together with the termi-
nology relies on Kan. [Gabriel 1962] cites [Shih 1959] who, in a paper on simplicial
sets, in turn cites [Kan 1958a] (in his bibliography only) and [Cartan 1958]. Car-
tan, when presenting the “théorie de Kan” (that means, Kan’s work on simplicial
sets) in his seminar of December 10 and 17, 1956, had not yet at his disposal Kan’s
paper on adjoints [1958a]; instead, he cited [Kan 1956a, 1956b] and “further, some
secret papers by Kan. See also the lecture notes of J.C. Moore, Princeton 1955-56
(en outre, quelques ‘papiers secrets’ de Kan. Voir aussi les Notes de cours de
J.C. Moore, Princeton 1955-56)”. Since Shih’s contribution is also a talk in the
Cartan seminar, it is to be supposed that he was one of Cartan’s students then.
Cartan certainly did know about Kan’s work through Eilenberg (much like in the
case of Buchsbaum, see 3.3.3.2); this shows how important the Cartan–Eilenberg
connection was for the development of category theory, since Gabriel, whose pri-
mary concern was not in simplicial sets, might very well have missed Kan’s paper
otherwise.

While Shih discusses adjoint functors, Cartan does not do that. Maybe they
were not yet in the “secret papers”. I did not make an attempt to get the lecture
notes of J.C.Moore mentioned above (since Cartan does not speak about adjoint
functors, it is not so likely that they are mentioned therein).

In this context, one should also discuss the relation between the categorial
concept of adjointness and the Bourbaki concept of universal problem. I have to
postpone this comparison to a separate publication.
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5.3 What is the concept of object about?

In section 1.2.2.2, the task of the mathematical philosopher was described as the
check whether the axioms set as conventions in a certain domain of mathematics
produce the respective intended model. As we will see, the development of CT as
well as internal developments of set theory seem to have led to the insight that this
is not the case for set theory. On the other hand, one should also try to identify the
intentions behind CT itself, and that is what I shall do in the following sections.

First of all, one might ask why CT employs the term “object”. It was stressed
repeatedly, in particular in connection with diagram chasing (see section 3.3.4.4),
that CT employs this term as an undefined one. Nevertheless, one has all reasons
to suppose that the use of the term as the name for a certain part of the data
of a category relies on the traditions of use of this term stemming from outside
mathematics: the term “object” obviously has traditional uses in common lan-
guage and in philosophical discourse. Thus, the intention of the concept of object
(and of category theory as a whole) can perhaps be uncovered by reference to
this tradition. I will give my answer only in the last chapter; but in what follows
important preparations to this answer will be made. First, I will revisit the idea
that CT is a theory of structures (an idea which seems to have been the major
methodological premiss of [Corry 1996]). Then, I will adopt a different methodol-
ogy and attack the question of the intention of CT through the analysis of the role
of the restrictions in its means of expression, thus emphasizing once more prag-
matics instead of semantics. This methodology will be applied to objects, arrows,
and finally categories. However, in the case of categories, attacked in section 5.4,
I chiefly stress categories as objects of study, of a theory, and the corresponding
methods, strategies and usages.

5.3.1 Category theory and structures

In the last analysis, the use made of the term “structure” in mathematical discourse
is quite vague. This vagueness is expressed in the fact that it is difficult to give
a satisfactory definition of the concept of mathematical structure in all its facets.
Wittgenstein would say that there is a family resemblance between its various
instances395; we play a language game when employing the term. For our own
purposes, we will confine ourselves in observing that mathematicians use the term
“structure” and that they are able to decide whether a particular use is meaningful
or not. During one’s mathematical training, one learned and internalized how to
use the term correctly396.

395[Wittgenstein 1958] I §67ff; see also 1.2.1.1.
396In the absence of a satisfactory formal definition of a term, the difference made between

“correct” and “reasonable” uses is obviously pointless.
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5.3.1.1 Bourbaki’s structuralist ontology

A well-known view on mathematics making use of the concept of structure is
Bourbaki’s397. One might think of this view as a philosophical position398 or
rather as an “image” of mathematics in the sense explained by Corry; anyway, this
view has been expressed in talks given by several members of Bourbaki and in texts
that appeared under the authorship of Bourbaki, so it is to be hoped that one can
claim the group had indeed this position (or this image, respectively). The talk
“Foundations of Mathematics for the Working Mathematician” [Bourbaki 1949]
was given by André Weil399; in this talk, a set-theoretical axiom system similar to
ZFC is presented. A second talk entitled “L’Architecture des mathématiques” was
given by Dieudonné [Bourbaki 1948b].

Structuralism maintains that mathematics is a science of structures. More
precisely, the term structuralism in the present book denotes the philosophical
position regarding structures as the subject matter of mathematics—while I call
structural mathematics the methodological approach to look in a given problem
“for the structure” (which seems to be the signification of “structuralism” in the
humanities). To put it differently: structuralism is the claim that mathematics
is essentially structural mathematics. This view is shared by Bourbaki. It is
debatable whether this can already be called an epistemological position—after
all, the term structure is kept unexplicated; i.e., structuralism, at least for the
one who believes in what Kreisel called the formalist-positivist doctrine, makes an
incomplete proposition about the object of mathematical knowledge. In agreement
with his belief in this doctrine, Bourbaki attempts an explication of the concept
“structure” (5.3.1.2).

In official texts, Bourbaki claims that structuralist ontology allowed one to
bypass certain problems of set-theoretical ontology:

We adopt here a “naive” point of view and do not enter the thorny ques-
tions midway between philosophical and mathematical ones which are brought
up by the problem of the “nature” of the mathematical “beings” or “objects”.
[The] notion of set, [ . . . ] for a long time considered as “primitive” or “unde-
finable”, was the object of endless quarrels, due to its character of extreme
generality [ . . . ]; the difficulties only disappeared when the notion of set itself
disappeared (and all the metaphysical pseudo-problems about the mathe-
matical “beings” with it), in the light of recent research concerning logical

397See [Houzel 2002] on Bourbaki’s adoption of the term.
398Other aspects of Bourbaki’s philosophy of mathematics, beyond the structuralist ones, will

be discussed in section 6.4.6.1. By the way, I should stress once and for all that expressions as
“Bourbaki believes” and the like are not meant to suggest that the whole group had one single
and coherent position; the most we can say is that we have to deal with a majority or official
position in most of these cases.
399That is at least what Mac Lane tells us; [1988a, 345]. The title of the talk suggests that

what is aimed at are rather mathematical than philosophical foundations; in particular it is not
intended to make mathematics as it is practised accessible to a metamathematical analysis (this
being certainly not what the working mathematician wants to do). I.e., what is aimed at is a
development of knowledge separated from its justification.
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formalism; in this new conception, the mathematical structures become, to
speak properly, the only “objects” of mathematics.

The reader will find more ample developments of this point in [[Dieudonné
1939] and [Cartan 1943]]400 [Bourbaki 1948b, 40 n.2].

We will see in a minute that the concept of set did not disappear at all in Bour-
baki’s definition of the concept “structure”; Wang calls this Bourbaki’s “basic
inconsistency” 〈#18 p.211〉. It is possible that Bourbaki distinguishes between
mathematical foundations (of a set-theoretical kind) and philosophical founda-
tions (structuralism)401. But it is questionable whether one can take set theory as
mathematical foundations and deny simultaneously that they are also the philo-
sophical foundations. Quine at least would certainly reject this view on the ground
that in his philosophical conception we cannot speak reasonably about anything
but extensions (hence for him, philosophical foundations have to be set-theoretical
in some sense).

[Volkert 1986, 278ff] discusses to some extent the paper [Cartan 1943] cited
by Bourbaki; he puts it in the context of a comparison of Bourbaki’s structuralism
with formalism and logicism (pointing out in particular the differences between
these positions); therefore, I will not enter myself in such a discussion.

5.3.1.2 The term “structure” and Bourbaki’s trial of an explication

Since the concept occupies an outstanding place in the thinking of many math-
ematicians of the age discussed here, its vagueness observed above is somewhat
dissatisfying. The influence of the concept in Bourbaki’s conception of mathemat-
ics may have been the reason that the group dared to propose a mathematical
definition of it402.

Such an explicit mathematical definition of “structure” is given by Bourbaki
in E IV [Bourbaki 1957]; see also [Corry 1996, 321–324]. What is aimed at is an

400“Nous nous plaçons ici au point de vue “naïf” et n’abordons pas les épineuses questions,
mi-philosophiques, mi-mathématiques, soulevées par le problème de la “nature” des “êtres” ou
“objets” mathématiques. [La] notion d’ensemble, [ . . . ] longtemps considérée comme “primitive”
ou “indéfinissable” a été l’objet de polémiques sans fin, dues à son caractère d’extrême généralité
[ . . . ] ; les difficultés ne se sont évanouies que lorsque s’est évanouie la notion d’ensemble elle-
même (et avec elle, tous les pseudo-problèmes métaphysiques sur les “êtres” mathématiques), à
la lumière des récentes recherches sur le formalisme logique ; dans cette nouvelle conception, les
structures mathématiques deviennent, à proprement parler, les seuls “objets” de la mathématique.

Le lecteur trouvera de plus amples développements sur ce point dans [[Dieudonné 1939] et
[Cartan 1943]]”.
401The distinction between mathematical and philosophical foundations is made explicit in

section 7.1.1.
402In some places of the present work, I need myself a definition of the term “structure”; I rely

on the work of Ferdinand de Saussure (1857–1913) who is known as the founder of linguistic
structuralism. Saussure saw language as a system of signs in which the precisest property of a
sign is to be something that the other signs are not (“die genaueste Eigenschaft [eines Zeichens]
liegt darin, etwas zu sein, was die anderen [Zeichen] nicht sind”; article on Saussure in [Lutz
1995, 782]). Such a system of signs became called a “structure” by the followers of Saussure from
the twenties on.
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assembling of all possible ways in which a given set can be endowed with a certain
structure. Hence, structures are only seized here in relation to underlying sets; it
remains unclear actually why Bourbaki claims to have explicated the concept of
structure here403. Explicitly, they characterize the situation that a set is endowed
with a structure, starting with an encoding of the sequence of operational steps
by which the structure on the set is assembled set-theoretically404. Hence, the
function of this tentative explication seems to be best understood from Bourbaki’s
ontological point of view taking the structures as the objects of mathematics;
the operation of endowing a set with a structure serves to embed these objects
in the set-theoretical foundations of mathematics (which Bourbaki conserves as
mathematical foundations without granting them any importance as philosophical
foundations, see above).

By Bourbaki’s tentative definition, the concept loses its vagueness. Hence,
if one takes Wittgensteinian philosophy seriously, one can speak here at most of
a partial success since the now lost vagueness was essential to the explicandum,
after all. Put differently, one can expect to make some fruitful use of this concept,
if at all, only if one manages to take into account the informal rules, the rules
of reasonable use of the term “structure” (as established in the community of
mathematicians).

To sum up: Bourbaki adopts a reductionist perspective. For Bourbaki, the
central operation is the endowing of a set with a structure; the structureless sets are
the raw material of structure building which in Bourbaki’s analysis is “unearthed”
in a quasi-archaeological, reverse manner; they are the most general objects which
can, in a rewriting from scratch of mathematics, successively be endowed with
ever more special and richer structures. In this approach, the various classical
number systems (the historical forerunners of sets as basic objects) are considered
as rather special structures, since they constitute crossing points of the various
structure types: R is the Archimedean ordered complete field etc. (E IV.7).

5.3.1.3 The structuralist interpretation of mathematics revisited

Corry pointed out that Bourbaki’s attempt to transfer the structural image of
mathematics into its body was artificial [1996]. Now, one is obviously confronted
with an even more far-reaching question, namely whether the structural image
of mathematics does describe mathematics justly or not, after all. This question
cannot naturally be answered in a simple manner (in particular, one would need

403I skip the investigation of the systematic and historical place of Bourbaki’s theory of struc-
tures among the explications of the concept of structure in mathematical logic. Such explications
can be found, for example, in [Bridge 1977, 6f] (see also p.16) or [Thiel 1995, 261ff]. System-
atically, Bourbaki’s explication seems to be on a par with these explications—and not with
CT.
404It is to be noted, however, that Bourbaki focusses on transportability as something charac-

terizing structure; this points in the direction of the categorial viewpoint. However, this does not
contradict my claim that Bourbaki is constantly interested in endowing a set with a structure—
even if this structure might very well be one transported from elsewhere.
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first of all a definition of “structure”. . . ); however, we have to consider the corre-
sponding discussion to some degree here since also CT was said to be developed
in relation to such a structural image405.

Hao Wang, in his paper [1971], discussed some answers to the question “What
is mathematics” (see also 1.3.1.3); one such answer is the following:

Mathematics is the study of abstract structures. This appears to be the
view of Bourbaki. [ . . . ] A conscious attempt to divorce mathematics from ap-
plications is not altogether healthy. The inadequacy of this outlook is revealed
not only by the omission of various central results of a more combinatorial
sort, but especially by the lack of intrinsic justification in the selection of
structures which happen to be important for reasons quite external to this
approach. [ . . . ] There is also a basic inconsistency insofar lipservice is paid
to an axiomatic set theory as the foundations, while serious foundational re-
searches are frowned upon. It would conform more to the general spirit if

#18number, set, function were treated in a more intuitive manner. That would
at least be more faithful to the actual practice of working mathematicians
today [Wang 1971, 49].

It is decisive to Wang’s argument that such a structuralist ontology is not able
to help the philosophers in their work (namely to name the criteria by virtue
of which the mathematicians make their choice). Another problem comes from
the nonstandard models of set theory, since for a steadfast structuralist, there is
no structure without isomorphy (compare Quine’s “no entity without identity”).
Nevertheless, the structuralist viewpoint remains appealing; this may explain the
massive activity of philosophers of mathematics in this field (Shapiro, Hellman,
Maddy etc.; see for example [Carter 2002]). The present work tries to contribute
another perspective to this debate, namely the one that structural mathematics
is characterized as an activity by a treatment of things as if one were dealing with
structures. From the pragmatist viewpoint, we do not know much more about
structures than how to deal with them, after all.

5.3.1.4 Category theory and structural mathematics

In structural mathematics, constructions are characterized in relative manner, that
means by their behaviour under manipulations, where the behaviour is observed
by comparing the results of different manipulations. One can change the sort of
manipulations under consideration.

Lawvere in [1966, 1] emphasized that

in the mathematical development of recent decades one sees clearly the
rise of the conviction that the relevant properties of mathematical objects
are those which can be stated in terms of their abstract structure rather
than in terms of the elements which the object were thought to be made
of. The question thus naturally arises whether one can give a foundation for
mathematics which expresses wholeheartedly this conviction concerning what

405“Mathematics is a network of hidden structures” [Mac Lane 1980, 362].
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mathematics is about [ . . . ]. Clearly any such foundation would have to reckon
with the Eilenberg–Mac Lane theory of categories and functors 〈#32 p.286〉.

These ideas can also be found in [Lawvere 1964, 1506]: “even in foundations, not
Substance but invariant form is the carrier of the relevant mathematical informa-
tion”. In the sequel to Lawvere, a similar view is defended for instance by Engeler
and Roehrl who say that CT emphasized structure instead of substance [1969,
58]. Longo compares set theory and CT as theories of mathematical structures.
His point of departure is Cantor’s theorem about the one-to-one correspondence
of the straight line and the plane. He comes to an interesting interpretation:

Hence, Cantor’s theorem is a negative result: it tells us that set theory
is an insufficient foundational framework for mathematics since it is first of
all a theory of point sets where ‘everything rests on’ points. In mathematics,
structures come first [ . . . ], while in set theory, sets are ‘endowed’ with them,
in each case ad hoc, compared to the heart of the theory itself, the points
without dimension and structure, in its absolute universe of reference, the
collection of all sets406 [Longo 1997, 15f].

Longo affirms that category theory overcomes these problems of set theory; he
even says that

In category theory, one wouldn’t even have conjectured Cantor’s theorem,
because the plane and the straight line are situated there in the “good cate-
gories” [ . . . ] in these categories, the plane and the straight line [ . . . ] are far
from being isomorphic407.

Historian’s remark: There is obviously no point in claiming that had CT existed
at the time of Cantor, the Cantor theorem would not even have been conjectured.
To the contrary, Cantor’s theorem might have been one of the crucial results which
turned the attention of mathematicians towards the fact that some well-known sets
come equipped with some additional structure—and this observation led to the
emphasis on structure, which in turn was at the historical origin of CT. Anyway,
it is interesting that Longo is able to present a situation with such a long history
in which the reduction of mathematical constructions to discrete “points” comes
to its borders. Also [Poincaré 2002, 107] contains such ideas—hence, Lawvere’s
conviction did by no means come to the fore only very recently408.
406“Le théoreme de Cantor est donc un résultat négativ : il nous dit que la Théorie des En-

sembles est un cadre fondationnel insuffisant pour les mathématiques, car elle est tout d’abord
une théorie des ensembles de points où « tout se fonde » sur les points. En mathématiques,
il y a en premier lieu des structures [ . . . ], tandis qu’en Théorie des ensembles celles-ci sont
« superposé », chaque fois ad hoc, par rapport au cœur de la Théorie elle-même, les points
sans dimension ni structure, dans son univers absolu de référence, la collection de tous les
ensembles”.
407“En Théorie des Catégories on n’aurait même pas conjecturé le théorème de Cantor, car le

plan et la droite y apparaissent dans les “bonnes catégories” [ . . . ] dans ces catégories, le plan
et la droite [ . . . ] sont loin d’être isomorphes” .
408Nevertheless, this conviction is subject to some harsh discussion. When McLarty said “I do

not believe that discrete structureless collections stand out among mathematical objects as the
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This said, one should focus on Longo’s argument. Longo refers to the idea
rather common among category theorists that giving a structure to point sets is
often ad hoc and artificial if one is chiefly interested in the structure itself. This
structural interpretation of CT amounts to the view that CT is a theory of abstract
structure without interest in set-theoretical realizations. The problem about all
this is that, as mentioned above, we have only a language game-type criterion for
how to apply the term “structure”. What is claimed is that a set-based definition
misses the point. So the structural interpretation is not a claim about categories,
but about the very notion of structure: The phrase “CT is a theory of abstract
structure” is not a characterization of “CT”, but of “abstract structure”. (And
there might be different such characterizations.)

The perspective of endowing a set with a structure does a good job in struc-
tural mathematics but is ultimately artificial. It is true: Grothendieck does not
question in principle the idea that in a “typical” situation of mathematical work,
one is concerned with a structured set; but neither does he think that the original
objects of investigation are sets to be endowed with a structure as the work pro-
ceeds; at most he thinks of structures for which one can determine an underlying
set. He is interested in “geometric” objects in a specified sense (in particular, the
geometric properties of the objects are partly independent of the “points” of the
underlying point set). The possibility to determine underlying sets is important
in view of certain methods and techniques (cardinality arguments, infinitary con-
structions, the existence of equivalence classes for certain equivalence relations),
but it is not the only option.

In a general categorial situation, it is not automatically possible to speak
about an object as a set endowed with structure. Therefore, [Gelfand and Manin
1996, 78] say:

We have to learn to treat an object of a category as if this object were a set
endowed with some structure. We have to be able to define the direct product
or the limit of a projective system of objects, to define what one would call
a group object, and so on. In classical constructions we use that objects are
composed of elements (points), and that these points can be processed in
various manners: one can form pairs or sequences, choose elements with a
given property, etc.

The main point is that there are nonclassical constructions in which it is not the
case that objects are composed of elements or points such that one has to think
about alternative ways yielding similar results. The use of the term structure in
reality is determined by the strategies in the work with structures.

If one is oriented towards ontology one could reproach me that “one has
to know first what structure is before being able to know how one works with
structures”. I claim that this reproach is empty and that one tries to explain the

ones you have to know about to understand a foundation” , Harvey Friedman replied “The finite
structureless collections seem to play a special role in thought and intellectual development. Bow
to the inevitable!” (http://www.math.psu.edu/simpson/fom/postings/9801/msg00185).
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clearer by the more obscure when giving priority to ontology in such situations (I
apply Occam’s razor). Structure occurs in the dealing with something and does
not exist independently of this dealing.

5.3.1.5 Categories of sets with structure—and all the rest

A “typical” model of the concept of category has the following data: the objects are
the different instances of a structure type, hence in particular sets with structure,
the arrows are mappings between these sets which preserve this structure. This
type of model409 is perfectly well adapted to the purpose of explaining to someone
with some mathematical training how the concept of category is intended to be
used—and it indeed serves this purpose quite often. For such an explanation to
work, it is prerequisite, in particular, that the “target” person has a certain idea
about the intended use of the term “structure”. As we saw above, this is by no
means a trivial prerequisite. Anyway, the formal concept of category has other
instances410 in which the rules for the use of the expression “structured sets with
the algebra of the corresponding structure-preserving set functions” seem to be
violated—in some cases, the objects of these instances do not look like structured
sets and the arrows not like functions between such sets; in other cases, although
the objects can be seen as sets with formal violations, the arrows are not functions
in the sense of set theory defined on the elements of these sets; or finally, the term
“structure” does not apply “reasonably”. These instances are nothing marginal but
were, as already a rough listing shows (see below), as crucial for the success of CT
as the “typical” instances. I call the instances of the second type nonstructural
categories, and the “typical” ones structural categories411.

409From the theoretical standpoint, it is not right to say that the category of groups is the
class of all groups together with the class of all homomorphisms between them. It is just an
infinite oriented multigraph with loops and commutativity relations which can be interpreted in
assigning to any vertex a certain group and to any edge a certain homomorphism, where moreover
edges are identified according to commutativity relations (which can be expressed on the level
of the graph as indicated by Eilenberg and Steenrod; compare section 2.4.2), and vertices if
they are isomorphic (i.e., if there is a pair of edges of a particular type between them). This
interpretation has a property that intuitively can be thought of as bijectivity (any group and any
homomorphism are represented in the graph, and no two of them have the same representation).
For more discussion of this viewpoint, see section 5.4.3.
410or, as we should say more accurately continuing the previous note: not every category ad-

mits an interpretation in terms of structured sets of a certain type as objects and (some of)
the corresponding structure-preserving functions as arrows. There are categories where such an
interpretation is possible in principle but artificial. There are categories where the notion of cat-
egorial isomorphism expressible on the graph level as a commutativity relation when interpreted
as indicated differs from set-theoretical bijectivity. One can transfer the described interpretation
process itself to the theoretical level (the level of graphs, the level of “formal” categories) in
describing it as a functor to the category of sets with certain properties.
411The structural categories are considered as so important that they are often the only thing

mentioned along with the definition of the concept of category in short presentations of the
theory such as encyclopedia articles; see [Meschkowski 1976, 137] and [Mittelstraß 1984] II 368,
for instance. The structural interpretation even is present in the term “morphism”—and this is
why I prefer the more neutral term “arrow”.
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Here is a list of some schemes according to which nonstructural categories
may be formed:

(1) For a category C (structural or not), Cop might be nonstructural. An example
was pointed out by Buchsbaum (see 3.1.2.2); he rather stressed that the
category obtained is not “concretely defined”.

(2) Partially ordered sets etc. are considered as categories with only one arrow
between two objects; this scheme was encountered in the Eilenberg–Mac Lane
treatment of limits (see 2.3.1.2).

(3) Monoids etc. are considered as categories with precisely one object in the
following way: the unit element is the object, the remaining elements are the
arrows. [Segal 1968] uses this conception in order to generalize Borel’s concept
of classifying space of a group [1953, 166] to general categories; compare
section 5.4.3.

(4) Categories of functors (functors usually are not considered as “sets with struc-
ture”, and natural transformations certainly are no set functions between
them); special case: simplicial sets.

(5) Categories of chain complexes are used by Eilenberg and Mac Lane and in
the theory of derived categories; see 5.1.2.

(6) Categories whose objects are structured sets but whose arrows aren’t structure-
preserving set mappings; this is the case of Htop [Eckmann and Hilton 1962,
227] and of some Cop for structural categories C—see (1) above.

(7) Finite categories obtained by a complete listing of their objects, arrows and
commutative diagrams play a role in deeper investigations of “abstract cate-
gory theory” like [Kan 1958a] or [Lawvere 1966] (see 7.2.2).

(8) Categories of morphisms of various types, for example slice categories (see
3.2.2.2 and 4.1.1.2).

Some comments about this listing are at hand. The listing is by no means com-
plete; it provides no rigid classification since the schemes are not disjoint; it sub-
sumes constructions of very different nature under one relatively vague heading.
What makes my distinction of structural and nonstructural categories perhaps
even less convincing is the fact that some categories can be seen both as struc-
tural and nonstructural412. The open sets of a topological space fall under scheme
(2), but they can also be considered as a structural category where only certain
morphisms—inclusions—are admitted (and they have indeed been considered thus
since the transition to the concept of site—see 4.1.2.2—was inspired by the idea
to admit more morphisms than merely the inclusions). A similar comment applies
in the case of a single group regarded as a category (scheme (3)).
412Actually, this is not very surprising since the schemes (1)–(8) in reality represent only certain

interpretations of abstract categories; compare notes 409 and 410 above.
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This vagueness is due to the fact that a language game plays a central role
in the present context. I could have tried to make a different distinction, more
systematic in appearance, in saying that the structural categories are the ones
having a set-valued forgetful functor. However, to say this is to say not very much,
since in the “definition” of the concept of forgetful functors, the language game
for the term “structure” appears (the functor is said to “forget some structure”
on the objects). In fact, the concept of forgetful functor is typically introduced
by a language game (which means here, by enumerating some examples) in the
textbook literature of category theory.

But there are vital mathematical differences between structural and nonstruc-
tural categories. In the proof of the fact that the predicate <X is a category> is
satisfied for a structural category X , the check whether the arrow compositon at
hand satisfies the category axioms is no great challenge since the arrows are set
functions; the real point in the proof is to point out that composition preserves
the structure—which means, two structure-preserving arrows compose not just
to another set function, but to another structure-preserving arrow (a particular
type of set function). In this respect, structural categories relate to Set much
as subgroups relate to groups: the crucial thing is the closure property, the rest
is inherited. This leads to the idea of considering structural categories as sub-
categories of Set; but even if there might exist representations of nonstructural
categories as such subcategories, too, the situation is completely different in this
case as far as the check of the category axioms is concerned.

As pointed out in chapter 1, philosophy of mathematics cannot, in my opin-
ion, be restricted to considering exclusively formally defined concepts. It is also
important to consider how concepts are actually used, in particular which instances
of the concepts are used, and which are not. For a long time, the concept of group,
although it was in principle defined just like it is nowadays, was restricted in use
to transformation groups. There can be different partitions of instances in used
and unused ones at different moments in history (it is methodologically difficult to
distinguish this partition from the a posteriori partition of instances in known and
unknown ones). This amounts to a historical distinction of instances: one might
call standard instances the used ones. In this sense, many of the nonstructural
categories have indeed been always standard instances; actually, they have been
introduced already by Eilenberg and Mac Lane.

This leads to the question of what role the structural scheme played in the
thinking of Eilenberg and Mac Lane. On p.237, they motivate the definition of
the concept of category thus: “from the examples ‘groups plus homomorphisms’ or
‘spaces plus continuous mappings’ we are led to the following definition”. Is this
only exposition (didactics), or were they really led to their definition thus? Let us
try to find some elements of an answer to this question. First of all, the overall aim
of Eilenberg and Mac Lane in studying categories (structural and nonstructural)
invariably was to obtain domains and ranges for functors; this fact is highlighted
in section 5.4.2. And the major motivation to study as many constructions as
possible as functors was that functorial constructions have properties stable under
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a passage to some limit. Thus the nonstructural categories appropriate to define
such functors in particular cases certainly were welcomed by them as much as the
structural ones. In this perspective, the nonstructural categories do not “violate”
some “intended model” of category theory since the intent of Eilenberg’s and Mac
Lane’s theory is not to describe as accurately and exclusively as possible totali-
ties of sets bearing a certain structure and structure-preserving functions, but to
submit as many mathematical constructions as possible to a picture wherein the
stability of properties (for example under a passage to some limit) is most explic-
itly analyzed. Sure, the constructions envisaged (and first of all, the involved types
of passage to the limit) more or less exclusively belong to what I called structural
mathematics above, but this does not even out the distinction between the two
candidates for intended models.

Is the “stability of properties” model more “technical” than the “totalities
of structures” model? If one is honest, one cannot pretend against one’s better
judgement that the concept of structure is nontechnical on the grounds of the fact
that it is blurred; in truth, this concept couldn’t be more technical, just because
its blurredness implies that it can only be reasonably used with some technical
experience. In this sense the “stability of properties” model is by no means more
“technical” than the “totalities of structures” model. Rather, the stability model
is more oriented towards pragmatics than towards semantics since transitions to
the limit and the like have to do with manipulations.

I think that the definition given by Eilenberg and Mac Lane includes non-
structural categories deliberately. One reason is that certain axioms (parts of
the definition) are automatically satisfied by structural categories (see above) and
hence become only relevant with nonstructural categories. Sure, one could say
here that this is no reason since by leaving out these axioms, they wouldn’t have
been able to eliminate the undefined term “structure” from their definition. A
better reason is that Eilenberg and Mac Lane needed nonstructural categories at
various places, especially for their principal intended application in the context of
the universal coefficient theorem. They wanted to describe a certain construction
(a limit) as a functor. Hence, not an intended content of the concept of category
is aimed at, but an intended application.

Since Eilenberg and Mac Lane when developing their “representations of cate-
gories” (see above) consider categories as subcategories of Set, one might conclude
that they indeed chiefly thought of structural categories. But their representations
apply to nonstructural categories, too (they do not use that arrows are set func-
tions).

In the context of the attitude of Eilenberg and Mac Lane towards structural
categories, also the observation that a single group can be regarded both as a
structural and a nonstructural category is important. As we saw in section 2.3.1.1,
Eilenberg and Mac Lane actually provide the possibility to regard a single group as
a structural category (since the group is regarded as a category of groups with just
one object). Why do they choose this structural approach (and not the one which
became standard since, namely to consider the unit element of the group as the
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only object, and the remaining elements as the arrows)? A possible reason is given
in n.117: the concept of category shall be recognizable as a generalization of the
concept of group (see also 5.4.1). Moreover, there is an interesting alternative offer
[1945, 256]: if the group is a transformation group, the space on which the group
acts may be considered as the object of the corresponding category. In some sense,
this indicates that the concept of structural category is a generalization of the
concept of transformation group (in the general case, you have more than just one
object), and that the concept of category runs through a historical reinterpretation
very much like the one suffered by the concept of group (compare the remarks
concerning Poincaré’s approach to groups contained in section 2.1.1). Eilenberg
and Mac Lane said that their theory

may be regarded as a continuation of the Klein Erlanger Programm, in the
sense that a geometrical space with its group of transformations is generalized
to a category with its algebra of mappings [1945, 237].

(The statement is analyzed in [Marquis 2006b].) And Mac Lane draws the follow-
ing comparison:

The notion of an abstract group arises by consideration of the formal
properties of one-to-one transformations of a set onto itself. Similarly, the
notion of a category [ . . . ] is obtained from the formal properties of the class
of all transformations [ . . . ] of any one set into another, or of continuous
transformations of one topological space into another, or of homomorphisms
of one group into another, and so on [1950, 495].

5.3.2 The language of arrow composition

The only information exploited in category theory is the algebra of composition
of arrows. This leads to the ideas that objects cannot be penetrated, that they
are characterized in intensional manner and in the same time only up to (cate-
gorial) isomorphy, and it explains why categories which are quite different in size
but equivalent are identified and why extensionally equal functions with different
codomains are distinguished. We can see here that the basic assumption of prag-
matist philosophy—the objects of our thought are determined by the linguistic (or
more generally: semiotical) framework available—is broadly confirmed.

5.3.2.1 Objects cannot be penetrated

When in CT a mathematical construction is labelled as an object, it shrinks to a
point which cannot be penetrated and of which one knows only the traces left by
its interaction with other objects (as in the famous cloud chamber). This view of
“objects” actually is not so remote from certain contributions to the philosophical
debate. Poincaré, for instance, says:
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The aim of science is not things themselves [ . . . ] but the relation between
things; outside those relations there is no reality knowable413 [Poincaré 1905b,
xxiv].

This is obviously first of all a proposition about things (choses) of nature, hence
about the limitations of natural science; however, there is no reason why such a
limitation should not be a methodological option in pure mathematics, too.

Similarly, the basic insight of pragmatism might have influenced categorial
methodology. For pragmatism puts an accent on the role of semiotical mediation
of an object; investigations of the “object itself” are dismissed as metaphysics while
the object is available only through its constitution by the subject, depending on
the means of constitution. That means that in the investigation of the object,
one is deemed to actualize it again and again, in ever new situations, to “regard
it from all sides”.

We have seen in section 4.1.1.4 that in CT one hopes to recover complete
information about an object by considering all arrows arriving at the object simul-
taneously. This is only enough for an identification up to isomorphism. If one
thinks of an externally given object about which CT has some information, one
might say here that CT has not “enough” information. The idea of CT, however,
is that any information relevant for the study of the object is already present in
the totality of the arrows arriving at the object. This is a methodological decision,
much like the assembling of an experiment in physics, a paradigm of observation:
only in this way can we make enquiries about the object. This point of view has
historical origins, as we have seen: there have been mathematical objects to which
there is no other access (or at least such an access was and is still not known to
be there). And this is so since the traditional ways of access to the object do not
manage to strip off ontological commitments.

CT considers as ballast what in the original conception of object was abso-
lute (nonrelative). In particular, there is no static “accompanying ontology”: a
complex construction in one category does not keep this ontological form once
and for all but shrinks in the next category (in the new situation of observation
under a different angle) to a simple object. It is to be firmly stressed, however,
that CT does not aim to introduce in this way a new reductionist ontology reduc-
ing everything to pointlike, no more reducible, objects characterized only by their
mutual relationships. Much to the contrary, the interest414 of this approach is the
possibility of a dynamical change of perspective: given objects can be considered
in extension in one category and as points in another; in some cases they can

413“Ce que [la science] peut atteindre, ce ne sont pas les choses elles-mêmes, [ . . . ] ce sont
seulement les rapports entre les choses ; en dehors de ces rapports, il n’y a pas de réalité connais-
sable” [Poincaré 1968, 25]. The translation of the first sentence is bad since Poincaré doesn’t
speak about the aim of science but about what science can achieve. But this is no serious problem
since the second sentence repeats his opinion very clearly.
414A further motivation for the focus on arrows was pointed out to me by Lawvere in personal

communication: the arrows arriving at an object give rise to incidence numbers and similar things;
see 5.4.3.
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be categories themselves and simultaneously objects of a category and arrows of
another and so on, where in every case another type of “rapports entre les choses”
is accentuated. In brief, one can change the methodological framework, resp. the
level of thematization—thus underlining again the basic idea of pragmatism ac-
cording to which it depends on the respective level of thematization which objects
one faces415. One could speak about a “strategy of relativization”.

For example, Lawvere pointed out that in a categorial setting, to be a first-
order property is not an ontological (absolute, context-independent) property of a
property, but depends on the chosen means of description.

[ . . . ] the usual categorical notions can be expressed as formulas in the
elementary theory of abstract categories; [ . . . ] the notions of infinite limits
and colimits, or of an object being “finitely generated” are not always ele-
mentary from the point of view of a given category, although they do become
elementary if the category is viewed as an object in the category of categories#19
[Lawvere 1966, p.3f].

A possible effect of this idea for set-theoretical foundations of CT is discussed in
section 6.7.

It is in agreement with the maxim that objects cannot be penetrated that
in general, they are not composed of elements or points. There are actually two
senses in which this can be the case:

1. objects may not be sets (since there is no mention of sets in the axioms fixing
the usage of the term object in category theory).

2. objects may not have elements, i.e., elements in the sense the term takes
in category theory. This can even occur when the objects are actually sets!
(For it means that this property of them is not visible in their external
characterization in the particular category, and correspondingly does not
influence their external properties, their “role” in this category.)

Gelfand and Manin in their didactical perspective (quoted in 5.3.1.4) give us
the impression that historically, the observation of fact 1 should somehow have
led to the introduction of the concepts giving rise to fact 2, but this is misleading.
Problem 1 was treated especially in the work of Freyd and Mitchell concerning
the admissibility of “diagram chasing” in abstract abelian categories—but Freyd
and Mitchell showed eventually that such categories can always be embedded in
categories whose objects are sets; compare 3.3.4.4. The categorial notion of element
intervening in problem 2 was developed by Lawvere in his elementary theory of
Set416 and by Grothendieck in his study of “spaces without points” in algebraic
geometry (see 4.1.1.4 and [Cartier 2001] for more details). Since both Lawvere
and Grothendieck treat problem 2, the emphasis on problem 1 or on problem 2
respectively does not really constitute a difference between the American and the
French style, as one might suppose.
415See 1.3.1.1.
416see [1964]; this paper will be briefly discussed in section 7.2.1.
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5.3.2.2 The criterion of identification for objects: equal up to isomorphism

Recall that two objects A and B are called isomorphic in CT if and only if there
is an isomorphism between them, i.e., an invertible arrow f : A → B (an arrow
such that there exists another arrow f−1 : B → A with f ◦ f−1 = 1B and f−1 ◦
f = 1A). Thus, arrow composition is the only means of expression used in the
formulation of the categorial concept of isomorphy, in agreement with the idea
that propositions about the objects and arrows of a category should be formulated
only using the linguistic means of CT. Categorial isomorphy does not rely on
bijectivity in the sense of set theory417; correspondingly, isomorphy does not even
presuppose bijectivity in categories which are set-theoretically realized. It goes
without saying that this notion of isomorphy is not equivalent to the set-theoretic
one.

Objects in CT can only be characterized up to categorial isomorphy; for a
given object, we can substitute an isomorphic object in any situation expressible in
the language of CT. This restriction of the means of expression does not alter at all
the intensional nature of this identification (even if it yields a coarser classification
than extensional equality)418.

Historically, there were numerous different motivations for the stress of the
criteria of identification called isomorphy419:

• All classification problems of structural mathematics (like the Homöomor-
phieproblem, the problem of the classification of algebraic varieties, the prob-
lem of the classification of finite groups etc.) obviously share the common
feature of finding first of all an appropriate criterion of identification accord-
ing to which objects of the type under consideration are to be partitioned
into classes. Often, problems of this kind held together whole disciplines420;
actually, a mere enumeration of the extensionally different instances of the
respective object type is not the task of such disciplines. Moreover, such
an enumeration in most cases is not even possible421; in many cases, the
extension of the concept is not (and cannot be) completely known.

• The main motivation of the first Eilenberg and Mac Lane paper (see 2.2.3)
was to find isomorphisms between groups, possibly by employing other iso-
morphisms, in order to calculate certain homology groups (by virtue of the
isomorphic characterizations).

417which in turn is not to be confounded with Grothendieck’s use of the term “bijectif” in [1957]
where it denotes simply the (categorial) property of an arrow to be mono and epi simultaneously
(see 3.3.4.1).
418One usually says that two terms are intensionally equal if they can be substituted one for

another in any sentence whatsoever. Here, we are interested only in sentences expressed in
categorial terms. Under such a limitation of expressive means, the substitution criterion can
lead to a criterion of identification weaker than extensional equality.
419i.e., set-theoretical or categorial isomorphy.
420See [Hartshorne 1977, 55ff], for example.
421This is not meant to be an argument relying exclusively on countability problems. There is

more to the “enumeration” alluded to than just giving a number.
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• In section 3.1.2.1, I shortly mentioned that already [Mac Lane 1950] proposed
a concept of abelian category; the reason for the failure of this enterprise is
given in [Mac Lane 1978, 22]: “[the] axioms [of [Mac Lane 1950]] were too
clumsy because he tried to get an exact duality between subobjects and quo-
tient objects; later it became clear that duality ‘up to isomorphism’ suffices”.
Buchsbaum manages to do what Mac Lane tried in vain since he finally
employs the right criterion of identification.

• The identification of isomorphic objects sometimes had the task to reduce
the size of a totality on which a construction was to be based, which means to
avoid set-theoretical problems. This will be discussed in 6.4.2.3 and 6.4.4.1.

• The concept of equivalence of categories is at issue here since, compared to
isomorphism of categories, an equality is replaced by an isomorphism (see
section 5.4.4.2). Hence, the motivations for the introduction of this concept
are among the motivations to stress isomorphy instead of equality.

5.3.2.3 The relation of objects and arrows

In practice of CT, arrows of a category can be considered in several ways as objects
of a new category (as in the case of the concept of slice category, see 4.1.1). The
motivation for this is that arrows do not admit the same kind of manipulation as
objects. Frequently, objects of this type (arrows made to objects) have no elements
(as we saw in 4.1.1.4). We could say, thus, that in a categorial approach to the
notion of set (roughly saying that a set is an object having elements), functions do
not, unlike in classical set theory, turn out in the last analysis to be nothing but
sets. (Incidentally, arrows are not necessarily functions in the sense of set theory—
see the next section; but there are already “tame” examples of arrows—which are
actually functions in the sense of set theory—having no elements.)

On the other hand, in an equivalent definition of the concept of category
(see [Eilenberg and Mac Lane 1945, 238]), objects are nothing but a very partic-
ular kind of arrows (namely identity arrows). This allows for further conclusions
about the intention of the concept of object: everything contained in it is already
contained in the concept of identity arrow—after all, CT cannot help anyway to
use exclusively the linguistic means of arrow composition to (try to) express any
content whatsoever. To come back to Poincaré: arrows are the mutual relations
(or more precisely the mutual relations as far as expressible in CT); in this sense,
they contain “intensional” information about objects.

All told, the distinction between arrow and object is a distinction of aspects,
since according to the maxim of relativity it is just the exchangeability of perspec-
tives which is methodologically fruitful.

The algebra of composition of arrows can be seen as a special system of
mutual relations since commutativity of a diagram indicates that, using a spa-
tial metaphor, there are different ways to get from one object to another. The
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theory considers the objects only insofar as constituted by manipulations; their
constitution by manipulations is subject to the theory.

5.3.2.4 Equality of functions and of arrows

Extensionally, the functions x2 : R → R and x2 : R → R+
0 are equal; in CT,

they are treated as different arrows (since the codomains are different; hence they
have a different behaviour under composition). As [McLarty 1990, 354f] points
out, this stronger criterion of identification was motivated historically by examples
from topology:

Topologists [ . . . ] had long thought of each map as going from one space
to a specific other space. A closed curve in a space S has long been seen as a
map from a circle to S. And no one would confuse curves on the torus with
curves in 3-space even if the torus might happen to be defined as a subspace
of 3-space. Every circle in 3-space can be continuously contracted to a point
while a circle drawn around a torus can not. Such differences are crucial in
topology.

This can be very simply rephrased in terms of composition of maps: you can model
the contraction as a map, and you obtain a map which composes with the map
from the circle to 3-space but not with the map from the circle to a torus.

Eilenberg and Mac Lane in 〈#25 p.245〉 take up this conception of arrows
as the reason to introduce “the idea of a category” altogether: “The idea of a
category is required only by the precept that every function should have a definite
class as domain and a definite class as range, for the categories are provided as
the domains and ranges of functors”. This quotation will be discussed in detail in
section 5.4.2.

5.4 Categories as objects of study

5.4.1 Category: a generalization of the concept of group?

One thing to be investigated prominently in my pragmatist approach to the study
of categories is the methods used in this study. In principle, one should analyze
in general from where CT gets them (if it does not create them ex nihilo, as it is
more or less the case with the proof method based on diagram chasing); but in
the writing of the present book, this has rather been a methodological orientation
in the analysis of particular contributions than a research theme in its own right.
In any event, it is reasonable to suppose that CT’s methods to some degree are
formed in analogy with group theory—the more so as the concept of category
can be considered as a generalization of the concept of group. I just note some
observations for such a comparison, most of them flowing from the sources studied
so far.
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To begin with, category theory, which focusses on a certain kind of compo-
sition, belongs to Algebra. The method employed in the applications of CT often
includes the question: what is algebraic in the given problem? This is already the
case with Hopf’s search for the “algebra of mappings” (2.1.2.1) and with Mayer’s
concept of complex (5.1.2); it becomes very explicit in the Cartan–Eilenberg book
〈#5 p.97〉 and in later applications of the fundamental groupoid (see [Brown 1968,
vi]).

Some concrete elements of a copy of methods from group theory can be found
in CT. Eilenberg and Mac Lane in a certain situation (see 5.4.4.2) use construc-
tions analogous to the left and right regular representations of group theory. The
concept of generator (Grothendieck) follows a group theoretical example, as does
Segal’s concept of the classifying space of a category (see 5.4.3 below). Charles
Ehresmann in [1965], according to the review (see MR 35 #4274), copied group
theory in the following way: “Since a category operated on by a category is a gen-
eralization of a group operated on by a group, this permits a definition of crossed
homomorphism and of first cohomology group”.

On the other hand, it would probably be more appropriate to speak of an
interaction here since category theory made some contributions to group theory,
too; see section 2.3.1.1 and in particular n.117 for some contributions of Eilenberg
and Mac Lane, and section 2.4.3 for Mac Lane’s paper [1950]. But this is not our
present concern.

When there is mention of semisimple categories, for instance (4.2.3), what
is copied is the theory of groups (or algebras). At the same time, concepts like
Tannaka category or Galois category [Deligne 1998, 15] have the task to character-
ize categorially certain concrete categories (like the category of real vector spaces
etc.)— where these characterizations can have several models. This is the two-fold
aim: categorial characterization of given object classes, and working “as usual” on
such CT-substitutes via the transfer of typical methods to CT. Grothendieck often
used theory copies in order to make unfamiliar situations more familiar; he spoke
about dictionnaire. Another example (to be discussed briefly in 5.4.4.1) are the
fibered categories whose origin was the fibration concept from topology.

5.4.2 Categories as domains and codomains of functors

In section 5.3.2.4, we saw that arrows are to be distinguished when having different
codomains—even in the case where they represent one and the same function (are
extensionally equal) in the sense of classical set theory. The reason for this was the
need to focus on composition. Now, also functors may compose, and one might
become interested therefore in their domains and codomains. As Eilenberg and
Mac Lane put it (in a somewhat apologetic context; see 〈#25 p.245〉): “The idea of
a category is required only by the precept that every function should have a definite
class as domain and a definite class as range, for the categories are provided as
the domains and ranges of functors”. This does not mean automatically that they
already saw functors as the arrows of a category; at last, they spoke about functors
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as “functions”, not “mappings” (which would be their terminology for arrows). But
it may very well be that they wanted to compose functors seen as functions and
in doing that applied the results of their analysis of composition of functions in
general.

For example, they regarded a directed set as a category in order to regard a
direct system as a functor (see 2.3.1.2); this way composition of functors became
a meaningful operation in the context of direct and inverse limits and yielded
an exact description of the situations that a functor “lifts to the limit”. This
example actually has a feature in common with other examples, namely that
a new category (structural or nonstructural) is introduced precisely to serve as
domain or codomain of a functor representing a certain construction. Virtually
all special categories considered in [1945] (functor categories, single groups as
categories, dual and product categories) are introduced for such a purpose (see
2.3.1.1 for details). We could even turn these observations into an argument
against the hypothesis that Eilenberg and Mac Lane ultimately wanted to say
that functors are the arrows of a category: if they introduce categories exclusively
as domains and codomains of functors, they would have introduced a category of
categories only if they were interested in considering a functor defined on (or taking
values in) this category! But this they were not: “none of our developments will
involve elaborate constructions on the categories themselves” 〈#26 p.245〉. They
do not add as many examples as possible for their conceptions (they do not indulge
themselves in formal extrapolation or playing around with the concepts), but they
develop tools clearly oriented towards particular purposes. This observation will
lead to important conclusions in section 8.1.2.

Obviously, the idea of introducing new categories as domains or codomains
of certain functors did not disappear after the Eilenberg–Mac Lane paper. To
give just two examples, Grothendieck in his Tôhoku paper introduced Open(X)op

in order to regard sheaves as functors, and Buchsbaum introduced A-Modop in
order to regard H as a functor.

5.4.3 Categories as graphs

Peirce hat [ . . . ] die beste Charakterisierung der Mathematik als die Tätigkeit des
“diagrammatischen Denkens” gegeben. Ich konstruiere in der Mathematik Diagramme,

die mich eine Anschauung gewinnen lassen von Dingen, die sonst nicht sichtbar werden.
[Otte 1994, 94]

As we have seen in section 2.1.2.4, one started to use arrows for graphical
representation of functions shortly before the basic concepts of category theory
were introduced. I do not know when one started to use the term “arrow” for
the morphisms of a category; at least, the idea of using that method of graphical
representation for morphisms was present from the very beginning. In the present
section, I want to discuss the role of representation in the interpretation of cate-
gories. This representation suggests, namely, to consider categories as graphs (in
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the sense of graph theory)422. Was this observation influential in the development
for methods in the study of categories?

Facts expressible categorially usually are displayed graphically, as diagrams,
hence as pictures which visualize empirically some idea. In particular, these pic-
tures contain arrows, and the observer may have the connotation of a movement,
something dynamical. In a certain sense, the arrows encode an instruction: run
through the diagram that way! (See also section 3.3.4.4 on the idea of “diagram
chasing”.)

Semantically, to say that it makes no difference which of the several ways
through a particular diagram one chooses is the same as saying that between the
various composite morphisms represented by these “ways” a particular equation
holds. However, one was not satisfied with this algebraic presentation—one wanted
certainly to have a real visualization (and not a mere symbolic representation) of
the “moves” or “transports” one thought of. I think that CT achieved its origi-
nal goal to clarify certain situations precisely thanks to this convenient graphical
device; a representation based exclusively on equations would not have brought
about a major change with respect to the original confusing situation. It was the
major task of categorial concepts in the books of Eilenberg and Steenrod, and of
Cartan and Eilenberg, to simplify proofs423, and this was achieved through the
use of diagrams (see 2.4.2 and 3.1.1.2, respectively).

Now, if one instead looks for methods for the mathematical treatment of
problems in category theory, one might start (and indeed has started) to con-
sider diagrams as topological objects (yielding incidence numbers, for instance);
by doing so, one enters a level above the level of intuitive use, and the dynamics
disappears in favour of a statics which is better adapted for treatment with geo-
metrical methods. Klaus Volkert stresses the importance of this methodological
option:

Contrary to f(x) = y which can be read as an equation “for something”,
after all—namely for the graph—the new symbol [X f→ Y ] stands “for itself”
(it does no longer appear as the description of a sensual state of affairs). [ . . . ]

It is for this reason in particular that with this new symbol, mappings
can be conceived as independent geometrical objects (namely as arrows, or
edges of a graph) and made starting points of constructions, as in Segal’s
construction of the classifying space of a category, for instance. [ . . . ]

While originally functions had been introduced to express the mutual
correspondence of concrete geometrical objects, such functions became now
themselves such concrete (or more precisely: diagrammatical) objects. They
moved from the descriptive level to a new object level424 [Volkert 1986, 73f].

422There is also another, less technical, use of the term “graphical” (as, e.g., in the combination
of “graphical representation”).
423Such was also the major motivation for algebraization of the methods of algebraic geometry

(whose objects had been algebraic before, after all).
424“Im Gegensatz zu f(x) = y, das ja als Gleichung “für etwas”—nämlich für den Graphen—

gelesen werden kann, steht das neue Symbol [X
f→ Y ] “für sich” (es erscheint nicht mehr als
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I do not think that arrows and commutative diagrams are mere symbols; originally,
they are icons. True, one operates sometimes on them as if they were symbols (for
example, one forms the dual category by “reversing arrows”)—but they still have
some iconic features. Maybe Volkert is right in suggesting that the spatial object
which is the “underlying graph” of a category can only be arrived at when an
appropriate symbolism for morphisms and objects of the category (which are not
spatial objects per se) is available. However, I do not find convincing his historical
argument aiming to show that arrows as signs “as such” (independently of their
iconicity) played a major role in the development of CT.

Volkert claims namely (ibid. p.206) that Segal’s idea to apply the concept of
classifying space to CT [1968] would not have been possible without that appro-
priate symbolism. I think that Segal’s construction rather was inspired by Borel’s
concept of the classifying space of a group425; indeed, Segal himself stresses this
origin on p.107 of his paper. But in the context of groups, the symbolism is absent
unless one considers the group as a category; hence the concept of classifying space
in this context certainly was not introduced using this symbolism. What Segal
does, hence, is to transfer a method developed in a certain context to another
context426.

There is nevertheless some evidence that Volkert’s interpretation of the sym-
bolism actually played some role historically. Eilenberg and Steenrod, when intro-
ducing the terminology of the commutativity of a diagram, say: “The combinato-
rially minded individual can regard it as a homology relation due to the presence
of 2-dimensional cells adjoined to the graph” (see 2.4.2).

What about the consequences of such an emancipation of arrows and dia-
grams as independent objects of study? Carl Ludwig Siegel was quite pessimistic
about them:

The next generation will no longer be able to read the works of Riemann
or Hilbert, for instance, if it is trained exclusively in exact sequences and
commutative diagrams427 [Siegel 1968, 6].

Siegel implicitly approves my epistemological approach which emphasizes the role
of training in the thinking of mathematicians; he is perhaps right in saying that

Beschreibung eines anschaulichen Sachverhalts). [ . . . ]
Nicht zuletzt deshalb wird es mit seiner Hilfe möglich, Abbildungen als eigenständige, geome-

trische Objekte (nämlich als Pfeile oder als Kanten eines Graphen) aufzufassen und sie damit
zum Ausgangspunkt von Konstruktionen zu machen: man denke etwa an die Konstruktion des
klassifizierenden Raumes einer Kategorie nach Segal. [ . . . ]

Wurden ursprünglich Funktionen eingeführt, um die Zuordnung konkreter geometrischer Ob-
jekte zueinander auszudrücken, so werden nun solche Funktionen zu konkreten geometrischen
(genauer: diagrammatischen) Objekten. Sie sind also von der Beschreibungsebene auf eine neue
Gegenstandsebene gewechselt”.
425[Borel 1953, 166].
426actually relying on ideas of Grothendieck, as he points out.
427“Der Nachwuchs wird überhaupt nicht mehr imstande sein, etwa in Riemanns oder Hilberts

Werken zu lesen, wenn er nur auf exakte Sequenzen oder kommutative Diagramme dressiert
ist”.
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conceptual progress may lead to the loss of the capacity to read mathematical
works couched in an older conceptual framework, and he is absolutely right in
saying that these works are still perfectly worth being read—and hence that such
a loss would be quite serious. But on the other hand, the concepts he mentions were
of crucial importance in the mathematical progress described in the present book,
and it would be even more harmful to ban them from mathematics. The difficult
problem in mathematical teaching certainly is to find an equilibrium between
progressive conceptual tools and older achievements.

5.4.4 Categories as objects of a category?

5.4.4.1 Uses of Cat

When and in which context was a category of all categories discussed for the first
time? We saw above that Eilenberg and Mac Lane, while introducing categories
as domains and codomains of functors and discussing composition of functors,
did not go so far as to regard the category of all categories. Mac Lane mentions
Cat in his first work on the problems of set-theoretical foundations for CT, and
actually in the context of the Tôhoku paper: “[[Grothendieck 1957]] has shown
that [ . . . ] a consideration of categories of categories has many advantages” [1961,
28]428. We need to determine whether such an interpretation can be trusted—for
Grothendieck in the Tôhoku paper does not explicitly speak about a category of
all categories. On the other hand, he does speak, as we saw in 5.2.2, about the
composition of functors, i.e., the arrow composition of Cat—but since he wants to
regard this composition as a bifunctor, he apparently is more interested in a functor
category having the arrows of Cat as its objects. It is not completely clear whether
his discussion of identification criteria for categories implies a consideration of
categories as objects of another category, see 434 below; anyway, one can hardly
claim that Grothendieck in this place showed “[the] advantages [of ] a consideration
of categories of categories”, for he pointed out explicitly the obsoleteness of the
concept of isomorphism of categories in favour of equivalence. Ultimately, Mac
Lane thought perhaps of the catégories définies par des schémas de diagrammes
(3.3.4.2) which in principle can be regarded as constructions in Cat—and I stress
at various places of the present book exactly this aspect of the Tôhoku paper that
constructions on categories are central in this paper.

The consideration of Cat is of undebatable importance at the stage of SGA,
namely in the context of fibered categories where to each object S of the base
category one has a fibre category FS (in analogy to fibrations of topological spaces),
and this actually in functorial manner (i.e., the mapping S �→ FS defines a functor
with values in Cat). In view of the intended application of this concept, the
“descent”, it is shown in exposé VI of SGA 1 that Cat has projective limits if the
index set belongs to the universe429 (p.3; Cat is to be read here as the category of

428this paper will be discussed in 6.4.2.1.
429For this set-theoretical notion, compare section 6.4.4.2.



5.4. Categories as objects of study 229

categories in the universe). For more details on this subject matter, cf. [Mac Lane
1971a, 239] or [Bénabou 1985, 29].

Lawvere’s attempt at an axiomatization of Cat (in view of a foundation of
mathematics) is discussed in 7.2.2.

5.4.4.2 The criterion of identification for categories

The concept of equivalence of categories apparently was first introduced in by
Grothendieck in [1957, 125] (see 3.3.4.3). Jean-Pierre Marquis told me privately
that in his opinion this was an astonishingly late introduction of an important
concept; as discussed in the case of adjointness, I have doubts whether such the-
ses of delay are useful. In the present case, my positive argument against the
thesis (relying on my periodization of the history of category theory) is that the
investigation of the criterion of identification for categories belongs historically to
the stage when one began to undertake constructions on the categories themselves
(hence, the era of Grothendieck’s Tôhoku paper).

It is interesting that there is, so to say, a competing criterion of identifica-
tion for categories, namely isomorphism of categories. An isomorphism between
categories C and D is given by a pair of functors F : C → D, G : D → C, such
that FG = IdD, GF = IdC . Thus, such an isomorphism, seen as an arrow of
Cat, is nothing but an isomorphic arrow in the sense of CT (explained in section
5.3.2.2). We will discuss below the systematic relations between the two notions;
first, let me say something about the early history of the criteria of identification
for categories.

[Eilenberg and Mac Lane 1945] speak neither about equivalence nor about
isomorphism of categories in the sense these terms later take in category theory.
First of all, they employ the term “equivalence” already in two other ways: on the
one hand, they call “natural equivalences” the special type of natural transforma-
tions which is central in their paper; on the other hand, they call “equivalences”
just the arrows nowadays called isomorphisms in the terminology of CT430.

Secondly, it is true that there is an appendix on p.292ff having the task “to
show that every category is isomorphic with a suitable subcategory of the category of
sets”. But what they show is that there are faithful representations (functors with
values in Set injective on mappings); then, they say that “it is clear that a faithful
representation is nothing but an isomorphic mapping of [the given category] onto
some subcategory of [Set]”. Now, “mapping” is in principle the term they use for
the primitive concept of arrow (morphism), but after all, they called “equivalence”
the special arrows we would call “isomorphism” now (see above). Hence, they

430See p.238 in [1945]. Besides Eilenberg and Mac Lane, this terminology is employed by
[Mac Lane 1950], [Buchsbaum 1955], [Mac Lane 1961] and [Spanier 1966]; also in [Grothendieck
1957, 123], the term équivalence is used once (apparently erroneously) in place of isomorphisme.
Nevertheless, Grothendieck’s use of the term “equivalence” for the criterion of identification of
categories was able to overcome the already well established usage in the Anglo-Saxon commu-
nity.
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apparently do not intend to speak about isomorphisms of categories in the sense
of CT. The proof uses the set of all arrows arriving at an object, but to read
this as a set-theoretical assumption imposed on the given category, namely that
these arrows actually form a set (which means, not a proper class) might very well
be an anachronistic reading, see 6.3.1 and 6.4.1. The constructions are designed
in analogy to the left and right regular representations of group theory. There
is another use of the term isomorphic in this sense in [Eilenberg and Mac Lane
1945]: “any given category C which has the property that any two mappings π1 and
π2 of C with the same range and the same domain are equal is isomorphic to the
category CP for a suitable quasi-ordered set P ”; see n.120.

Serre in [1956, 2] comes close to the concept of equivalence of categories:
“coherent algebraic sheaves and coherent analytical sheaves are in biunique corre-
spondence, and [ . . . ] the correspondence between these two categories of sheaves
leaves invariant the cohomology groups”431. It is true, the term category is used
only in an informal manner in Serre’s work; however, the theorems proved about
the above mentioned correspondence imply that the categories are equivalent in
the technical sense. When introducing the concept of equivalence, Grothendieck
was doubtlessly influenced by this result of Serre; moreover, Grothendieck’s gen-
eral goal was it to make analogies complete, a goal which he achieved repeatedly
by transforming at least one of two given categories as much as was necessary to
get a pair of equivalent (or dually equivalent) categories; see 4.3.

Let us now study the relation between equivalence and isomorphism of cat-
egories both systematically and historically. Gabriel explains how to change the
definition of arrows between two categories considered as objects of another cate-
gory in order to make an equivalence an isomorphism:

Two categories A and B are equivalent if they are isomorphic if one defines
the morphisms in the following way: a morphism from A to B is the class of
functors from A to B isomorphic to a given functor432 [Gabriel 1962, 325].

(For Gabriel’s set-theoretical foundation for a category having these morphisms,
see section 6.4.4.3.) A second way to make an equivalence an isomorphism is
explained by Manin (compare section 5.4.4.3): equivalence is isomorphism of those
categories obtained when making the classes of isomorphic objects the new objects
(hence to consider the so-called skeletons433).

431“Faisceaux algébriques cohérents et faisceaux analytiques cohérents se correspondent biuni-
voquement, et [ . . . ] la correspondance entre ces deux catégories de faisceaux laisse invariants
les groupes de cohomologie”.
432“Deux catégories A et B sont équivalentes si elles sont isomorphes lorsqu’on définit les

morphismes de la façon suivante : un morphisme de A dans B est la classe des foncteurs de A
dans B qui sont isomorphes à un foncteur donné” .
433a concept introduced by Isbell in [1957, 564]. “A skeleton is a full subcategory containing

exactly one representative of each equivalence class of isomorphic objects” [1960, 542]. Isbell is
credited with the concept in [Freyd 1964, 158]; he uses it also in the construction of a counterex-
ample to one of Lawvere’s theorems about his axiomatization of the category of all categories
(see 7.2.2).
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It is an important fact that equivalence of categories, and not isomorphism
of categories, became considered as the “right” criterion of identification for cat-
egories. (Some implications of this fact for the philosophical interpretation of
categorial concepts will be discussed in sections 5.4.4.3 and 6.7.) This fact is
also important for the distinction of the different stages in the development of
CT employed in the present book: a distinction between constructions in and
constructions on categories can be drawn more clearly when different criteria of
identification for the respective constructions are employed. The historian might
ask for what reasons isomorphism of categories “did not make it”. There was no
real debate on the question since the first discussion of isomorphism of categories
(pace the Eilenberg and Mac Lane appendix discussed above) comes along with the
introduction of the concept of equivalence of categories in Grothendieck’s paper:

it is important to observe the difference between the notion of [equivalence
of categories] and the much stricter notion of isomorphism [of categories]
(which applies if one wants to compare categories which are sets) [ . . . ] No one
of the equivalences of categories encountered in practice is an isomorphism434

[Grothendieck 1957, 125].

(Actually, it is not altogether clear what Grothendieck meant by “isomorphisme”.
It is true, Grothendieck on p.122 clearly says that an arrow u is called an “iso-
morphisme” if it admits an inverse. One could suppose, hence, that by using the
term “isomorphisme” on p.125, he meant precisely an invertible arrow—and hence
considered categories at least implicitly as objects of a category. However, since he
says that the notion of isomorphism applies in the comparison of categories which
are sets, he thinks, if at all, only of a category of small categories, or perhaps
simply of a set-theoretical concept of isomorphism of categories (a bijection with
additional properties).) It might very well be that Grothendieck had tried out first
the isomorphism concept and gave it up since it turned out to be not useful. The
textbook literature contains such considerations in order to present the concept of
equivalence as the superior one from the very beginning. For instance, [Pumplün
1999, 47] tells his readers that a “typical” category like Grp or Top simply is too
big to have another category isomorphic to itself which occurs in a natural way
and is not constructed artificially.

Another reason to refuse isomorphism of categories is given by [Gelfand and
Manin 1996, 71]:

An isomorphism between categories C and D is given by a pair of functors
F : C → D, G : D → C, such that FG = IdD, GF = IdC . Contrary to
expectations, this notion appears to be more or less useless, the main reason
being that neither of the requirements FG = IdD, GF = IdC is realistic.
Whenever we apply two natural constructions to an object, the most we can

434“Il importe [ . . . ] d’observer la différence de [la] notion [d’équivalence de catégories] avec la
notion beaucoup plus stricte d’isomorphisme (qui s’applique si on veut comparer des catégories
qui sont des ensembles) [ . . . ] Aucune des équivalences de catégories qu’on rencontre en pratique
n’est un isomorphisme”.
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ask for is to get a new object which is canonically isomorphic to the old one;
it would be too much to hope for the new object to be identical to the old
one. An illuminating example is the double dualization.

This means that equivalence takes into account the categorial criterion of identi-
fication of objects, see 5.3.2.2.

The last quotation leads us to another consideration. The example of double
dualization of real vector spaces was already employed in [Eilenberg and Mac Lane
1945] to explain in what sense a natural isomorphism is “stronger” than an isomor-
phism (the bidual is naturally isomorphic to the original space while the simple
dual is “only” isomorphic). Eilenberg and Mac Lane, standing as they were at
the very beginning of conceptual analysis, stressed that the former isomorphism
on objects behaved not like the latter with respect to base dependence—a matter
certainly useful to fix ideas, but strongly tied to their principal concern (homology
of complexes à la Mayer), after all). It is not altogether clear how this observa-
tion relates to another analysis of the problem which was only possible after some
additional conceptual development and consists simply in saying that the former
isomorphism is an isomorphism of functors while the latter cannot be such a thing,
since the simple dual considered as a functor goes to the dual category and hence
cannot be isomorphic to the identity functor.

Hence it becomes clear that the later (Grothendieckian) terminology for a
natural isomorphism, “functorial isomorphism”, would be a better terminology in a
didactical perspective: it says that the isomorphism at hand actually is an isomor-
phism between the functors involved. You cannot “understand” the Eilenberg–Mac
Lane terminology unless you have more or less the same technical common sense at
your disposal as they had; the Grothendieckian terminology, however, is more pre-
cise (in the sense explained in section 2.4.1.2: it makes successful communication
more likely) since it can be deciphered according to a publicly available key—
although perhaps looking more “technical”. By the way: I do not intend to say
here that formal exposition is easier understood than the informal; such a claim
obviously would be heavily at variance with my overall philosophical approach.
I only want to say that first “functorial isomorphism” is a terminology which al-
lows, contrary to “natural isomorphism”, to reconstruct the formal definition of the
concept from the terminology (which in my view is a good thing, as soon as one
accepts that the concept in didactical perspective is a derived concept, reversing
the historical order of introduction), and second that the terminology reveals a
true insight into the conceptual structure of the difference to be expressed—and
this is certainly a sign of a “good” terminology.

5.4.4.3 Cat is no category

If the totality of all categories were itself a category , one would expect that for
the objects of this category, the usual criterion of identification is valid, namely
isomorphy. However, since categories are rather identified when being equivalent
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(instead of being categorially isomorphic), this totality is no category but a dif-
ferent kind of structure, a 2-category435. This observation was stressed by Manin
when in his talk entitled “Georg Cantor and his Heritage”436 held at a DMV an-
nual meeting 2002 on the occasion of the attribution of the Cantor medal [Manin
2004] he described another vision of Grothendieck, namely the vision of a hierar-
chy of equivalences. Manin manages to express a highly interesting interpretation
of some basic concepts of CT in quite clear terms.

When at [a certain stage of the] historical development, sets gave way to
categories, this was at first only a shift of stress upon morphisms [ . . . ] of
structures, rather than on structures themselves. [ . . . ] However, primarily
thanks to the work of Grothendieck and his school on the foundations of
algebraic geometry, categories moved to the foreground.

I agree with Manin in this historical thesis: it might very well be that categories
indeed moved to the foreground when Grothendieck started to consider the toposes
as the true objects of topology, replacing the spaces. Manin continues to set up

an incomplete list of changes in our understanding of mathematical ob-
jects brought about by the language of categories. Let us recall that generally
objects of a category C are not sets themselves; their nature is not specified
[ . . . ].

A. An object X of the category C can be identified with the functor it
represents: Y → HomC(Y, X). Thus, if C is small, initially structureless X
becomes a structured set. This external, “sociological” characterization of a
mathematical object defining it through its interaction with all the objects
of the same category rather than in terms of its intrinsic structure, proved to
be extremely useful in all problems involving, e.g., moduli spaces in algebraic
geometry [437].

B. Since two mathematical objects, if they are isomorphic, have exactly
the same properties, it does not matter how many pairwise isomorphic objects
are contained in a given category C. Informally, if C and D have “the same”
classes of isomorphic objects and morphisms between their representatives,
they should be considered as equivalent. [ . . . ]

This “openness” of a category considered up to equivalence is an essential
trait, for example, in the abstract computability theory[438]. [ . . . ]

C. The previous remark also places limits on the naive view that categories
“are” special structured sets. In fact, if it is natural to identify categories
related by an equivalence (not necessarily bijective on objects) [ . . . ], then
this view becomes utterly misleading[439 ].

435I was first pointed to this observation by Jean-Pierre Marquis.
436Given this title, one might be surprised that Manin speaks about Grothendieck and CT. In

my view, he actually succeeds at least to some degree in showing that there is indeed a nontrivial
(systematic) connection between Cantorian set theory and CT, but I will not discuss this here.
437see 4.1.1.3.
438Manin refers to his talk [1999] here.
439This idea will be taken up in section 6.7 in the context of the problems of set-theoretical

foundations of CT.
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More precisely, what happens is the slow emergence of the following
hierarchical picture. Categories themselves form objects of a larger cate-
gory Cat morphisms in which are functors, or “natural constructions” like
a (co)homology theory of topological spaces. However, functors [ . . . ] also
form objects of a category. Axiomatizing this situation we get a notion of
2-category whose prototype is Cat. Treating 2-categories in the same way, we
get 3-categories etc.

The following view of mathematical objects is encoded in this hierarchy:
there is no equality of mathematical objects, only equivalences. And since
an equivalence is also a mathematical object[440 ] there is no equality between
them, only the next order equivalence etc., ad infinitum.

This vision, due initially to Grothendieck, extends the boundaries of clas-
sical mathematics [ . . . ].

Manin’s text gives us a multitude441 of hints as to the intention linked to CT in
the thinking of working mathematicians today and as to how this intention de-
veloped historically. Manin stresses that for the instances of each of the concepts
“object”, “arrow” and “category” there are different criteria of identification respec-
tively442. This hierarchy of criteria is also a historical one: it begins with the idea
of characterizing constructions up to isomorphy; it is only later (beginning with
the Tôhoku paper) that one becomes interested in the identification of categories.

440namely, we may wish to add, a functor. Actually, it was not always as natural as it seems
to be for Manin to regard functors as mathematical objects, see section 2.3.4.
441Manin added in personal communication that a lot of observations about the development

of Grothendieck’s categorial vision can be found in the thesis of the late Philip Grotard (which
seems to be unpublished as yet).
442A similar view is developed in [Marquis 2006a].



Chapter 6

Categories as sets: problems and
solutions

Wer nur einen Hammer hat, dem wird jedes Problem zum Nagel.
Volksweisheit

The possibilities and problems attendant on the construction of a set-theo-
retical foundation for CT and the relevance of such foundations have been subject
to extensive debates for many years. In this chapter, I will consider the historical
development of these debates. So far, a detailed discussion of this subject matter
is absent from the historical writing on CT; I do not know whether this lack of
interest is but one more expression of the profound indifference exhibited by most
mainstream mathematicians towards set-theoretical foundations of mathematics
in general and of category theory in particular, or whether it indicates merely
that the problem is an open one and hence in a trivial sense does not yet admit a
conclusive historical treatment. Anyway, in a historical and philosophical analysis
of a theory, one is not supposed to parrot uncritically the prejudices of the workers
in the field. To the contrary, such prejudices are to be analyzed with priority;
questions like: What are the motives underlying them? What basic convictions of
the people active in the field do they reveal? What have been their consequences
for the development of the theory and of the debates concerning it? The answers
to these questions are most important both for an understanding of the theory’s
history and for its philosophical interpretation.

The historian is interested in the development of set-theoretical foundation
of CT because the mathematical achievements concerned were of great importance
for certain developments but simultaneously criticized from a certain point of view.
Hence, one can study here in what way the framework was modified to keep the
results stable; the clash of relevance with criticism is the driving force of change.
In the present case, moreover, the discussion of the criticism was not restricted to
the members of the mathematical community who provided the achievements, but
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included also members of the discipline of set theory with its specific mixture of
mathematical and philosophical contents. A conflict between the two communities
evolved (see 6.2.2).

The different proposals in each case parallel certain directions in the devel-
opment of the research discipline “set theory” (large cardinal hypotheses, reflec-
tion principles, anti-foundation axiom etc.); in this respect, the chapter implicitly
presents also a partial overview of the modern development of set theory443 in its
different aspects.

Why is the philosopher interested in the analysis of this history? It has
been demonstrated that difficult problems occur when trying to give CT a set-
theoretical framework; on the other hand, the philosopher can ask what is the
epistemological outcome of such a set-theoretical framework. According to a
widespread opinion in traditional philosophy of mathematics, the possibility of
a consistent reduction to set theory is a sufficient condition for the possibility of
the cognition of the objects in question. Since this condition turned out to be, at
least apparently, not satisfied in the case of category theory, the philosophers had
to cope with the fact that the mathematicians had nevertheless taken these objects
for cognizable, accessible objects. For this reason, the history of the foundational
debate is of great importance for the epistemological considerations of the present
work.

The problems came about when one began to consider constructions on cat-
egories, to treat these constructions like ordinary mathematical objects, in partic-
ular to apply set-theoretical operations to them in order to make them in turn the
starting point of new constructions. It is true that the mathematicians working
with the concepts still adopt the pattern “sets with structure” in their thinking.
However, beginning with Grothendieck, as we have seen, and continued in the
theory of elementary toposes (see 7.3), category theorists made efforts to simulate
set-theoretical features in CT. And this does not only indicate that the concept
of set is indeed important for mathematical thinking. It indicates equally well
that CT is seen as something not automatically presupposing the availability of
set-theoretical methods (for else it would be unnecessary to simulate them or to
treat them as desirable, which means, not automatically available) but being in
the same time a perfectly legitimate conceptual framework (for else the desired
simulation would not be carried out therein).

The chapter begins with a short presentation of the problems (6.1) and some
methodological discussion (6.2). From section 6.3 on, the solution proposals most
important in history are discussed.

443In 1.2.3.2 it was stressed that the occurence of the problems of self-application determined
to a large extent the further development of set theory.
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6.1 Preliminaries on the problems and their interpretation

In what follows, we will need the concept of a proper class. To introduce it, we
have to adopt the current picture of set theory, the cumulative hierarchy created
by iteration of the operations of set forming. According to this picture, a proper
class is a collection which does not occur on a definite level of the hierarchy. This is
an objective property of the collection; however, it depends on your philosophical
position whether you believe that proper classes exist—since it depends on this
very position whether you believe that the cumulative hierarchy exists. According
to [Feferman 1977, 151], the conception of sets in the cumulative hierarchy is
related to the Platonist viewpoint.

6.1.1 Naive category theory and its problems

Let us begin our discussion of the problems by inspecting once more what cate-
gories are intended to be.

The notion of a category [ . . . ] is obtained from the formal properties
of the class of all transformations [ . . . ] of any one set into another, or
of continuous transformations of one topological space into another, or of
homomorphisms of one group into another, and so on [Mac Lane 1950, 495].

But:

[ . . . ] problems arise in the use of collections such as the category of all
sets, of all groups, or of all topological spaces. It is the intent of category
theory that this “all” be taken seriously [ . . . ] [Mac Lane 1969, 192].

#20
Naively a category is, just like all the other constructions of structural mathemat-
ics, a set with structure; hence, it has an underlying set. This naive viewpoint,
however, leads to problems already in the case of “typical” categories like Set or
Top, because Set would in particular have to contain its own underlying set as an
object, and since every set can be regarded as a discrete topological space (hence
also the set underlying Top), Top would again have to contain its own underlying
set as an object. To put it otherwise, these two underlying sets would have to be
elements of themselves. But sets containing themselves as elements are explicitly
excluded in many axiomatizations of set theory. A possible fix is to apply a partic-
ular form of set theory, namely the Von Neumann–Bernays–Gödel axiom system
NBG444.

The main feature of NBG is a distinction between two types of collections.
Besides (ordinary) sets, NBG admits classes (which means, variables which are
intended to be interpreted as proper classes in the interpretation based on the
cumulative hierarchy); such classes are allowed to have elements but not to be
an element of something. In this framework, the above mentioned categories are

444In a widespread terminology, this system allows one to distinguish “small” categories (sets)
from “large” categories (proper classes).
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tamed: Set has no underlying set, but an underlying class which consequently
needs not to be an object of Set; similarly, there is no problem with the category
of topological spaces: since every set can be considered as a discrete topological
space, the collection underlying this category must be a proper class (its elements
are sets from every level of the cumulative hierarchy)—but in NBG no proper
class can be considered as a topological space whatsoever (for according to the
definition of the concept of topology, this class would have to be an element of
the set or proper class, as the case may be, of open sets a topological space comes
equipped with).

However, this is no longer sufficient in later applications and developments
of CT, for example in Grothendieck’s renewal of the conceptual bases of algebraic
geometry. There, two types of constructions begin to play an important role,
namely categories of (large) categories and categories of functors between arbitrary
categories445. While in the first case, the class of objects would have to have
proper classes as its elements, the problem with functor categories is that if the
class underlying the domain category of the functors were proper, proper classes
would have to be elements of the class of morphisms of the functor category (since
a natural transformation is a family of arrows indexed by the class of objects of
the domain category of the functor transformed)446.

Grothendieck’s solution uses the concept of (Grothendieck) universes (see
6.4.4.2); this complicates things since in this framework, one has still not the naive
category of all categories etc. but rather one of them at each level; at least one can
make constructions involving the categories of one level, occasionally by passing
to the next level. Anyway, this solution like others is not entirely satisfactory. As
Müller puts it:

If we insist that category theory should be closed under any desired di-
agonalisation (self-application), we have to pay some price for this, e.g., in-
consistency, some sort of type raising, some restriction to partially defined
objects or some artificial devices [Müller 1976, vii].

This constitutes an interesting parallel between set theory and category theory:
in both cases, there is a discrepancy between the naively intended model and
the formal treatment. According to Isbell, set-theoretic foundations for category
theory are an open problem:

The well known fact that some basic constructions applied to large cate-
gories take us out of the universe seems to me to indicate that the construc-
tions are not yet properly presented. The discovery of proper presentations is#21
too difficult, though, for all work on these constructions to wait for it [Isbell
1966, 620].

445For some evidence that these constructions were indeed of practical importance, compare
sections 5.2.2 and 5.4.4.1.
446This problem is discussed for the first time in [Mac Lane 1961] (see 6.4.2); [Isbell 1963]

distinguishes different types of problems with categories of functors.
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6.1.2 Legitimate sets

How serious are the problems? By this question, I do not intend to suggest that I
find them unimportant, but to stress that the historian and the philosopher should
try to understand why people, despite the problems, believe in the existence of a
“proper presentation” not yet found.

Most of the problems seem to depend on the chosen axiomatization of set
theory, since it depends on it whether a particular set is “legitimate” or not. For
there is not “the” set theory. There is a naive concept of set (the set of all things
with a given property), and since this concept leads to well-known problems, there
are different formal explications of the concept, all of them hopefully grasping
more or less the intended meaning and avoiding simultaneously the problems. In
usual set theories, some collections are excluded by convention. Most often, such
conventions have certain tasks (in particular to avoid contradictions), but it is not
clear a priori whether the same task could not also be accomplished by another
convention.

Obviously, “legitimate” is not synonymous with “unproblematic”. On the one
hand, there might very well be constructions which are unproblematic but are
excluded by the chosen version of the axiom system because it is a “cautious”
system excluding not only the known problematic constructions, but also every
construction “resembling” these constructions in some respect. This might reflect
the analysis of the problem made by the author who installed the axiom system,
hence depend on the feature of the problematic construction which he suspects as
being responsible for the problem. On the other hand, one cannot know very much
about the consistency of the chosen set theory: the theory could very well admit
constructions as legitimate which are only not yet known to lead to contradictions.

No single convention can be proved to be sufficient to avoid contradictions (for
such a proof would amount to a proof of consistency of set theory). The particular
convention to exclude sets being elements of themselves actually is not even known
to be necessary: one cannot prove the corresponding axiom from the other axioms
assuming consistency of the axiom system. Certainly, Russell’s collection <The
set of all sets not being elements of themselves> leads to a logical contradiction;
that means, this collection is known to be problematic and consequently should
be illegitimate. But it is merely a widespread error to think that the same would
be the case with any form of self-containing.

For example, the collection <the set of all sets> (which is far less “patho-
logical”447 than Russell’s collection) apparently is sometimes excluded since it
would have to be an element of itself. But this is just not the right reason to
exclude it. Such a reason is rather yielded by Cantor’s theorem (for any set M ,
|P(M)| � |M |); the argument runs as follows: in contradiction with the proved448

theorem, the cardinality of the set of all sets cannot be inferior to that of its power

447See 1.2.1.1.
448with the usual diagonal argument; see also 6.5.



240 Chapter 6. Categories as sets: problems and solutions

set because every element of the power set is a set and hence should be an element
of the set of all sets [Copi 1971, 7].

Actually, this argument relies on aspects of the intended meaning of the term
“set” (namely that a set should have a definite cardinality, a power set and so on);
the same is true in the case of the Russell collection since in this case, one has
first to accept that for any set the question is always meaningful whether a given
object is an element of the set or not. It is the intention of the (naive) concepts
of set and element that this question is meaningful for any set. Hence, it could
very well be (and indeed is rather certain) that in these cases problems occur not
merely because a form of self-application of a concept is involved, but because the
concepts submitted to such a self-application have certain semantical peculiarities
(occuring on the right of the term “of” in the sets’ descriptions beginning with
“the set of”). Russell does not simply ask whether a concept applies to its own
extension, but whether a concept which is about application of concepts to their
own extensions applies to its own extension. It is in this sense that there are
problems concerning self-application, and CT does not concern self-application in
this sense.

This means that the general exclusion of self-containing, as provided by the
foundation axiom (FA), is a “strong” remedy to the problems in the sense that one
does not need to adopt such a strong one. (This is trivial for if FA or any axiom
else were a logical truth, there would be no reason to take them as axioms.) I
have the impression that FA, while being introduced for different reasons449, gave
many people the impression that the set of all sets is problematic for the reason
that it would have in particular to contain itself as an element. In reality, it is
only true that under assumption of FA all (legitimate) sets have the property not
to be elements of themselves. For this reason, the two collections <The set of all
sets which are not elements of themselves> and <The set of all sets> coincide
in this situation—at least if this time the term “set” occuring on the right of the
term “of” in the two cited descriptions of sets is interpreted in agreement with the
convention expressed by FA. To put it otherwise: the self-containing of the set of
all sets becomes problematic only through FA.

In agreement with the observation that self-containing is not supposed to be
problematic in principle, set theories without FA were proposed450. In such set
theories as well, the set of all sets is illegitimate (for if it were not, the theorem of
Cantor would yield a clash of the system with the intended interpretation).

449concerning decidability problems; see [Quine 1958, 156]. It is particularly important to
stress that FA was not introduced to cope with known contradictions of naive set theory: this
can already be achieved with the separation axiom!
450See for example Quine’s concept of stratification [1958, 157]. [Müller 1981, 265] indicates

that Bernays has shown around 1958 that FA is practically not needed in set theory. More
recently, the proposal of “hypersets” did find some popularity; see [Barwise and Moss 1991].
Obviously, FA is not simply dropped but replaced by another axiom—the anti-foundation axiom
AFA. See also 6.5.
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6.1.3 Why aren’t we satisfied just with small categories?

A particularly important concept in category theory is that of a complete category
(a category having all finite and infinite limits). Completeness is a property which
not only subsumes other important properties like AB 3 but also plays a crucial
role in the theory of adjoint functors. [Freyd 1964, 78] shows that small complete
categories are lattices and says:

The moral: If one insists upon simplifying the language so as to exclude
categories that are not small, then all interesting complete categories will
have been excluded.

#22

See also 〈#37 p.297〉.

6.2 Preliminaries on methodology

6.2.1 Chronology of problems and solutions

It would be an historical oversimplification to say that CT has such and such
problems and these were handled so and so. What problems occur in practical
work depends on the stage of development of the theory. I identify three stages
of CT, the first two distinguished by the problematic constructions they make use
of, all three by the respectively different attitudes towards the question of what is
actually the problems’ significance to CT or set theory.

• Eilenberg and Mac Lane and their immediate successors use CT as a lan-
guage (3.4.3.2; even their use of categories of functors falls under this heading,
see 5.2.2). One does not intend to apply CT to itself (“none of our devel-
opments will involve elaborate constructions on the categories themselves”
〈#26 p.245〉); I argued in section 5.4.2 that since Eilenberg and Mac Lane
introduce categories exclusively as domains and codomains of functors, they
would have introduced a category of categories only if they were interested
in considering a functor defined on (or taking values in) this category. They
think that NBG is sufficient as a foundational framework. At the same time,
they seem to take for granted the paradigm “object = set with structure”451.
This can be seen, for example, from the fact that the term isomorphic is still
used in an implicit manner (5.4.4.2).

451They investigate categories not of this type (see 5.3.1.5), but chiefly again as linguistic means
for the expression of facts about structured sets or structural categories; moreover, most of these
categories are small—i.e., have point-like objects.
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• beginning with Grothendieck’s Tôhoku paper and Kan, constructions on cat-
egories move to the foreground; universes are developed452. Only at this stage
is a discussion with set theorists started (6.2.2).

• beginning with SGA, fully developed in the theory of elementary toposes,
more and more constructions are recognized as internally substitutable; one
wishes to carry them out not always and exclusively “with respect to Set”,
but more and more often also with respect to other toposes; in particular,
indexing sets disappear in favour of appropriate indexing objects and cate-
gories.

The discussion in the present chapter will concern mainly the first two stages. The
last stage implies to some extent the belief that a solution of the set-theoretical
problems is not really needed; while Eilenberg and Mac Lane seem still to hold that
set theory is more intuitive than CT, Lawvere and Tierney (see section 7.3.1) seem
no longer to share this belief. This change of attitude will be discussed in section
8.1.2. This notwithstanding, Bénabou developed, in the spirit of the last stage,
an internal proposal for a solution of the foundational problems of CT; but this
contribution is more naturally discussed in the next chapter since it presupposes
some knowledge of the contributions of Lawvere. See 7.4.2.

There is an important difference between the two first-mentioned stages con-
cerning the agreement of formal presentation and intention. Just before the first
stage was entered, the concept of “proper class” was pathological: there were no
mathematically relevant instances of this concept; it was used exclusively in the
context of antinomic constructions, i.e., in the (from the point of view of the
“working mathematician” irrelevant) context of logical analysis. Eilenberg and
Mac Lane did find mathematically relevant instances of the concept (like the to-
tality of all topological spaces etc.), but still they did not intend to use proper
classes in the same manner as other collections. For instance, the discrete topology
on the class underlying Top does not play any role in mathematical considera-
tions; if someone had pulled it out of the hat, it would have been just to point to
some fussy problems of self-application. At the later stage, however, the problem-
atic constructions belong perfectly to what one intended to grasp with the formal
definition; they are not seen as pathological at all. This is stressed by Freyd’s
observation about complete categories 〈#22 p.241〉, for instance, and it will be
the main theme of the subsequent discussion.

452Mac Lane expresses the transition thus: “Initially, categories were used chiefly as a language,
notably and effectively in the Eilenberg–Steenrod axioms for homology and cohomology theories.
With recent increasing use, the question of proper foundations has come to the fore. Here experts
are still not in agreement; our present assumption of “one universe” is an adequate stopgap, not
a forecast of the future” [Mac Lane 1971b, 29f].
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6.2.2 The parties of the discussion

One can identify roughly two parties in the discussion, namely on the one hand
those who wish to apply CT in certain mathematical questions and in this per-
spective cannot help but be interested in what can be said about consistency of
CT, resp. about security measures against inconsistencies; on the other hand the
representatives of the discipline of set theory who feel called upon to intervene
since the discussion of these matters falls into their competence. In what follows,
I use the shorthand “category theorists” for the first and “set theorists” for the
second group; but these terms are expressly meant to be nothing but shorthand
for what was just explained.

The conflict between the two communities is caused by the fact that the
category theorists, taking the role of “protectors of the achievements”, discuss ex-
clusively such criticisms which they could not help articulating themselves, under
“working conditions”, but are not interested in the criticisms advanced by the set
theorists (which are, so to say, articulated under “clinical” conditions and corre-
spondingly are accentuated differently); a similar remark applies to the solution
proposals of the respective communities (which naturally concern criticisms in the
respective analysis). Hence, in the respective communities, different criteria are
applied; for instance, the claim that problematic constructions are without rel-
evance for the mathematical applications of the theory is employed by category
theorists to dispel objections, while it is used by Kreisel to point out that the
security measure proposed by the category theorists to reinforce set theory is su-
perfluous (see 6.6)—incidentally, Kreisel does so to avoid security measures which
to take would be contingent according to the latest findings of the research dis-
cipline of set theory453 (i.e., in taking them one would not only lose a degree of
freedom in the choice of one’s set-theoretical model, but moreover, in the present
case, one would choose a model without taking into account the criteria which
set theorists have worked out to guide such a choice). From the point of view of
category theorists, on the other hand, the security measure has the task to enable
the unhindered flow of ideas, to exclude an uninteresting problem.

The first publication devoted exclusively to the foundational problems of CT
was Mac Lane’s talk at the Warsaw conference on logic and set theory in 1959;
this paper will be discussed in detail in 6.4.2, where it will be argued that Mac
Lane made an effort to interest the community of set theory in the questions454.

There are some contributions by “leading” set theorists to the search for
solutions, for example [Feferman 1969] with [Kreisel 1969a] (as well as some other
work by Feferman), [Kreisel 1965] and [Lévi 1973]. Among these, Kreisel is the first
having published something on the question (see 6.6). But what does it mean,
methodologically, to distinguish a researcher as “leading” in his discipline? Did
other “leading” set theorists explicitly refuse to work on the problems, and in case

453See 6.4.6.3.
454Mac Lane actually made more contributions to foundations of CT. Some remarks on them

are contained in [Kelly 1979, 537f].
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they did, how did they justify this refusal? To what degree are other researchers
having worked on the questions (Sonner, Osius, Kühnrich, . . . ) established in the
community of set theory beyond their contributions to foundations of category
theory? Finally, if one adheres to the hypothesis that set theorists dealt with
the problems in a community-specific way, one should investigate what were the
effects of their results among category theorists: what are the criteria to judge the
legitimacy of the questions and the adequateness of the answers? Where can the
results be found, and what kind of reader does the exposition address? A first step
in answering all these questions exhaustively would be to make up a bibliography
and a citation index of all work on the foundational problems of CT published so
far; only then could the questions be attacked in a systematic manner. There is
neither space here to do this, nor is it at issue, since for the present purpose it is
sufficient to restrict ourselves to the work anterior to 1970. However, it is useful to
keep these questions in mind, and I will make an effort to discuss them en passant
wherever possible.

6.2.3 Solution attempts not discussed in the present book

There is more to set-theoretical foundations of CT than just NBG and Grothen-
dieck universes. In sections 6.5 and 6.6, two other solution attempts are discussed
which did not become as widespread as Grothendieck universes. However, many
others sharing the same fate had to be left out of the discussion, partly because
of their marginality, but mostly for reasons of restricted time and space. Anyway,
the book has not the aim to press the analysis up to the present, so more recent
developments will not be considered. Some of the omitted proposals should at
least be mentioned shortly:

• Isbell’s detailed analysis of the problem of functor categories; see [1963].

• Extensions of NBG ([Osius 1976] in continuation of [Oberschelp 1964]; see
also [Oberschelp 1983]).

• A strong set theory by A.P. Morse is developed in an appendix to [Kelley
1955] and mentioned in [Feferman 1969, 231] and [Isbell 1963, 44, 46]. [Drake
1974, 17] explains the differences between NBG and Morse’s theory: in the
comprehension scheme

∃X∀y(y ∈ X ↔ φ(y))

according to NBG, φ is supposed to be a first-order formula, allowed to have
free class variables but no bound class variables; this yields a predicative
extension of set theory which is actually finitely axiomatizable and does not
increase the power of set theory. In Morse’s theory, on the other hand, φ
can be a second-order formula, so that bound class variables may occur; this
yields an impredicative extension of set theory which is stronger than original
set theory violating the cumulative type structure (since the collection of all
classes is located above the level of V ).
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• Feferman’s enterprises of explicit mathematics and collections and operations
[1975, 1984, 1985] attempt to treat functions and sets as having equal rights.

• Kühnrich [1977] implements a kind of approximation process for categories of
all objects of a given sort. The problematic constructions are approximated
but never really carried out.

• Mac Lane [1969] establishes that one universe besides ω is enough (in some
specified sense of the word “enough”).

6.3 The problems in the age of Eilenberg and Mac Lane

6.3.1 Their description of the problems
Eilenberg and Mac Lane use the term “set” in the combination “the set of all
objects of [a] category” [1945, 238]; likewise, they call explicitly the collection⋃

B Hom(B, A) a set (without using the notation; see 2.3.1.1). But this does by no
means indicate that they were indifferent to set-theoretical problems. (Ironically,
such a thing would be indicated by these cases only if they employed explicitly
a clear-cut distinction between small and large or between sets and classes, but
that is just what they did not do!) Already in [1942b], there is some marginal
discussion of the question of “legitimacy” of the collections employed. In [1945],
the question of set-theoretical foundations is attacked more explicitly:

6. Foundations. We remarked in §3 that such examples as the “cat-
egory of all sets”, the “category of all groups” are illegitimate. The difficul-
ties and antinomies here involved are exactly those of ordinary intuitive set
theory; no essentially new paradoxes are apparently involved. Any rigorous

#23foundation capable of supporting the ordinary theory of classes would equally
well support our theory. Hence we have chosen to adopt the intuitive stand-
point, leaving the reader free to insert whatever type of logical foundation (or
absence thereof) he may prefer. [ . . . ]

It should be observed first that the whole concept of category is essentially
an auxiliary one; our basic concepts are essentially those of a functor and of

#24a natural transformation [ . . . ] The idea of a category is required only by
the precept that every function should have a definite class as domain and
a definite class as range, for the categories are provided as the domains and

#25ranges of functors. Thus one could drop the category concept altogether and
adopt an even more intuitive standpoint, in which a functor such as “Hom” is
not defined over the category of “all” groups, but for each particular pair of
groups which may be given. The standpoint would suffice for the applications,

#26inasmuch as none of our developments will involve elaborate constructions on
the categories themselves [1945, 246].

What is meant when Eilenberg and Mac Lane say “none of our developments
will involve elaborate constructions on the categories themselves”? They introduce
functor categories, dual categories, product categories—aren’t these constructions
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“constructions on the categories themselves”? Aren’t they “elaborate”? I think that
what is common to their “developments” is that a category is always introduced
exclusively to serve as a domain or a range of a functor (it is an auxiliary concept,
and for this reason, they call they theory not category theory, but theory of natural
equivalences). But does this not mean to regard functors as arrows, i.e., categories
as objects? To regard something as a functor means to express certain facts about
it. They simply did not want to express facts about categories.

Eilenberg and Mac Lane are sensitive concerning the problems posed by re-
garding functors as objects of categories. On p.250f, they discuss composition of
functors, and point out that composition can also be applied to natural transfor-
mations. They consider two functors R : C → E, T : B → C (for the sake of
simplicity, I omit the second variable of their functor T and the assumptions on
co- and contravariance they make); next, they consider the composition R ⊗ T of
the two functors as well as two natural transformations ρ : R → R′, τ : T → T ′

with appropriate functors R′, T ′; they point out how to define a composite trans-
formation ρ ⊗ τ : R ⊗ T ′ → R′ ⊗ T (the positions of the primes are due to the
assumptions on co- and contravariance). And then they say:

ρ ⊗ τ has all the usual formal properties appropriate to the mapping
function of the “functor” R ⊗ T [1945, 251].

Notice how carefully the naive view that R ⊗ T actually is a functor defined on a
suitable category of functors (having the arrows of Cat as its objects) is avoided
by the use of quotation marks and the insisting on formal properties. In section
6.4.4.1, we will see that Grothendieck later gave a quite similar account, and in
section 8.1.2, the role of the “purely formal” character of problematic categorial
constructions in the philosophical debate will be analyzed.

What does it mean when they say “the whole concept of category is essen-
tially an auxiliary one” 〈#24 p.245〉? A reader acquainted with proof theory may
suggest that they think of eliminability of explicit definitions. What they say, how-
ever, is that they chiefly wanted to introduce the concepts of functor and trans-
formation—which obviously in a thorough set-theoretical formalization would be
as much eliminable as the concept of category itself. Hence, eliminability does not
meet the distinction auxiliary—not auxiliary to be made here.

I suppose that Eilenberg and Mac Lane just wanted to avoid a “definition
scheme”—that means an informal definition containing ingredients like “for exam-
ple” or “like”. If they had been saying that “a functor consists of two mappings
the first of which assigns for example to every topological space for example a
group etc.”, they would have been relying on their readers’ ability to grasp what
types of objects can be taken to replace the spaces and groups. In the formal
definition, however, this question just plays no role. In this sense, one might say
that by the use of the very concept of category, Weil’s reproach that the concept
of functor is but metamathematical vocabulary (see 2.3.4) is invalidated since no
more informal, inhaltliche ingredients are needed.
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6.3.2 The fixes they propose

Eilenberg and Mac Lane point out that the desire to consider real totalities (and
not just legitimate collections appropriate for a particular purpose) is vital:

Perhaps the simplest precise device would be to speak not of the category
of groups, but of a category of groups (meaning, any legitimate such category).
A functor such as ‘Hom’ is then a functor which can be defined for any two
suitable categories of groups, G and H. Its values lie in a third category
of groups, which will in general include groups in neither G nor H. This
procedure has the advantage of precision, the disadvantage of a multiplicity
of categories and of functors. This multiplicity would be embarrassing in the
study of composite functors [1945, 249].

Consequently, they propose two solutions of a different kind, namely solutions
which, instead of modifying the definition of the concepts of category and of func-
tor, rely on a different (and hopefully more performing) “foundation for the theory
of classes”:

• on the one hand, the unramified theory of types (but they immediately point
out the problem that isomorphisms between groups of different types would
have to be considered);

• on the other hand, “one can also choose a set of axioms as in the Fraenkel–
von Neumann–Bernays [sic!] system”.

Mac Lane presumably was among the readers of the Journal of Symbolic Logic
and the papers of his thesis supervisor Bernays.

In this account on foundational problems, even one key idea of the later
Grothendieckian proposal of universes is foreshadowed: “Another device would be
that of restricting the cardinal number, considering the category of all denumerable
groups, of all groups of cardinal at most the cardinal of the continuum, and so on”.
However, they do not further discuss this idea; in particular, they do not point
out, although they could easily have done it in analogy with what they said about
the inadequacy of regarding different legitimate categories of, e.g., groups and of
the type-theoretical approach, that also in the present case, problems of the same
kind may occur (the value of a functor defined on denumerable groups might cease
to be denumerable and so on). Problems of this kind were discussed later in the
context of Grothendieck universes, see 6.4.6.2 below. Incidentally, these problems
are not even completely avoided by the central feature of Grothendieck universes
(which makes inaccessible cardinals more promising candidates for the Eilenberg–
Mac Lane proposal of “restricting the cardinal number”), namely that inaccessible
cardinals yield models of ZFC455. Rather, to adopt inaccessible cardinals makes
it possible to distinguish between size problems which are merely due to the fact
that one did choose just too simple-minded a restriction (as in the Eilenberg–Mac
Lane proposal) on the one hand and size problems which reveal a real problem,
455This observation was made, using a different terminology, in [Zermelo 1930].
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such as the fact that the construction at hand cannot even be tamed by the closure
properties of models of ZFC, on the other hand.

Among the proposals of Eilenberg and Mac Lane, NBG was the only proposal
retained by later authors—including Grothendieck himself in [1957]. Mac Lane’s
explicit adoption of NBG (and the corresponding introduction of the Hom-set-
condition, see below) in [1950] (compare 2.4.3) may have been of some influence in
this respect. Actually, the gap between the French and the American community
concerned also set-theoretical foundations for CT since Grothendieck universes
replaced NBG only belatedly in papers and books written by American authors.
Still [Mitchell 1965] uses NBG (this might have led [Mac Lane 1969] to advance
the claim that one universe is enough).

6.4 The problems in the era of Grothendieck’s Tôhoku
paper

6.4.1 Hom-sets

A simple way to introduce some limitation in categorial constructions is to stipu-
late that for every couple of objects A, B, the collection Hom(A, B) is a set. This
condition (the “Hom-set-condition”) presupposes the idea that a collection is not
necessarily a set, as expressed for example in NBG. In this sense, a partial choice
between the various possible set-theoretic systems is pre-established.

It is not astonishing that Eilenberg and Mac Lane did not yet make ex-
plicitly this assumption since they did not yet currently apply the small/large
(or the set/class) distinction (see 6.3.1 above). It is true, at least the collection⋃

B Hom(B, A) is called explicitly a set by them (without using the notation; see
2.3.1.1). But it would be anachronistic to think that by doing this, they implicitly
intended the collections Hom(A, B) to be small—they do not use the term set in
any restricted sense.

The first writer to apply the condition was perhaps [Mac Lane 1950, 495]. It
is applied then in [Grothendieck 1957] (see 3.3.4.1), [Kan 1958a, 294], [Freyd 1964]
and [Mitchell 1965]. Grothendieck’s intention was it to have set-theoretical con-
structions available on Hom-sets; see 3.3.4.1. Mac Lane wanted to use NBG; in this
connection, he felt the need to say whether the Hom-collections are proper or not
(and he chose the option which allows more manipulations with these collections).

6.4.2 Mac Lane’s first contribution to set-theoretical foundations of
category theory

The first paper devoted exclusively to the presentation and solution of the foun-
dational problems of CT is [Mac Lane 1961], a paper read at the 1959 Warsaw
conference on infinitistic methods. Mac Lane lists the then known problems and
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gives partial solutions by restrictions on the sets of morphisms between two ob-
jects. He calls “locally small” (abelian) categories which allow such a restriction
(see hereafter); he arrives eventually at a definition of a kind of universe (p.39)
more restricted than Grothendieck’s. The general cases remain unsolved.

6.4.2.1 Mac Lane’s contribution in the context of the two disciplines

Mac Lane’s contribution was clearly motivated by recent developments: “many
[set-theoretic difficulties] have arisen in the recent applications of categories to
homological algebra” [1961, 25]. Actually, Mac Lane’s paper looks like a reaction
to [Grothendieck 1957] in certain respects; however, a closer inspection of the
paper shows that some features of the theory are treated in a form different from
Grothendieck’s. Incidentally, the problems discussed often arise precisely in the
context of these proposals (while the different treatment is propagated by Mac
Lane because in his view it has in the same time some advantages). In fact, Mac
Lane refers to a paper by Buchsbaum where the latter uses the concept of limit in
a set-theoretically problematic way and to a “not yet published” method by Yoneda
containing a set-theoretically problematic treatment of Ext and Tor (p.33f; more
generally, the problem is the usual problem of the Yoneda lemma, see [Mac Lane
1971a, 237]). Hence, Mac Lane does not miss the occasion to defend the approach
of his community (cf. 3.4.2).

The infinitary constructions central to Grothendieck’s approach are men-
tioned only marginally (p.29); this has an effect on Mac Lane’s definition of a
universe: property U4 concerning arbitrary unions (see 6.4.4.2 below) is lacking
(p.39). This means that Mac Lane’s solution does not work for the central problem
with AB 5.

In 5.4.4.1, Mac Lane’s claim that “[[Grothendieck 1957]] has shown that [ . . . ]
a consideration of categories of categories has many advantages” (p.28) was dis-
cussed; it turned out that the claim is justified to a certain degree but contains
a strong part of interpretation since Grothendieck’s consideration of Cat is at
most an implicit one. Mac Lane’s interpretation witnesses for the farsightedness
of the one who has a feeling for the possibilities of CT, but follows the wording of
Grothendieck’s text only very loosely.

In the context of the role of Grothendieck’s paper for Mac Lane’s, it is inter-
esting to note that Mac Lane at that time was aware of the more complete solutions
possible by employing Grothendieck universes456, as he indicates: “Grothendieck
(unpublished) is reputed to use the assumed existence of strongly inaccessible car-
dinals to construct large ‘universes’ [ . . . ]” (p.42).

On the other hand, I have the impression that Mac Lane tried to profit by an
excellent opportunity to interest the community of set theory in the questions457.
The Warsaw conference can be regarded as a great conference on logic and set
456cf. section 6.4.4.2 below.
457One year before, Dedecker noted the lack of attention for the questions payed by this com-

munity; see section 6.5.
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theory (Bernays, Fraenkel, and Tarski were among the participants). Since Mac
Lane delivered his talk on this occasion, he might have intended to make an
appeal to the representatives of the research disciplines of mathematical logic
and set theory; this thesis is actually supported by his conclusive remarks (see
below): Mac Lane belongs, so to say, “by coincidence” to both communities: he
was probably invited to Warsaw by Bernays who had been his thesis supervisor,
and it is further to be supposed that Mac Lane who by then had been working
on completely different matters for twenty years did choose the subject matter of
his talk to reach a compromise between his own interests and the overall subject
matter of the meeting. He might have hoped, too, to press ahead with the solution
of the problems by opening a dialogue with the competent experts. It is further
possible that the organizers of this meeting (devoted as it was to large cardinals
in particular) had already heard of Grothendieck’s use of inaccessible cardinals
(see 6.4.4.2) and hoped that Mac Lane could give more detailed explanations
(while he actually barely mentioned it, see above). Actually, Tarski’s axiom (a
historical forerunner of Grothendieck’s, see 6.4.5.2) was among the subjects of the
conference: Bernays explicitly discusses it in his talk (cf. [1961, 16]).

Mac Lane’s conclusive remarks contain interesting ideas:

The rapid development of general arguments on categories suggests that
new difficulties will arise beyond the four we have listed. What is needed is
a new and more flexible type of axiomatic set theory, adequate to handle all
these new difficulties as they arise.

This idea of a “flexible” set-theoretical foundation will be central in the subsequent
discussion. With category theory, a mathematical discipline arose which continues
to produce, as it develops further, constructions which pose problems as far as set-
theoretical realization is concerned. In principle, any foundational system fixed in
some manner may be unable to cope with every problem possibly occuring in the
future.

6.4.2.2 Mac Lane’s observations

According to Mac Lane, set-theoretical difficulties appear, for instance, during the
derivation of the functor Hom. He points out that the axiom of choice is applied
there to a proper class:

[ . . . ] to get Ext2 one must choose one resolution from the (possible)
proper class of all projective resolutions of an object C of the category. This
uses the axiom of choice for a proper class. In the category of all R-modules,
this use can be avoided, since each module C can be written as the quotient
C = F/A of a standard free module F = F (C), say the free module generated
by the elements of C [1961, 32].

Now, this use of AC for classes can not be avoided in similar fashion in the case
of sheaves dealt with by Grothendieck in [1957]. For one needs rather injective
resolutions there, but such a thing as a “standard injective resolution” is not known
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(Grothendieck gives only an existence proof)458. Is there a situation in the Tôhoku
paper where a resolution has to be chosen for the calculation of a higher derived
functor? When Grothendieck develops general homological algebra in the spirit of
[Cartan and Eilenberg 1956], he writes on p.143:

In order to be able to define the right derived functors of a covariant
functor or the left derived functors of a contravariant functor, one has to
suppose that every object A ∈ C is isomorphic to a subobject of an injective
object, from which one concludes actually that A ∈ C admits an injective
resolution [ . . . ] 0 → A → C0 → C1 → · · · , and this defines RiF (A) =
Hi(F (C))459.

If one wants actually to calculate a derived functor by this latter definition, one
has to pick out at least temporarily a resolution; Grothendieck’s proof in the case
of sheaves does not allow for such a concrete calculation. Hence, when Mac Lane’s
says that “to get” Ext2 one must choose a resolution etc., this is to be read as “to
calculate”.

Mac Lane also points out the problem with functor categories, more partic-
ularly the Yoneda lemma (p.34). Another problem discussed on p.36 concerns the
formation of direct limits. According to a proposal by [Buchsbaum 1960], one can
make exact a left exact functor using direct limits; however, the index “set” of the
limit would be a proper class. Mac Lane comments on this: “it is embarrassing in
particular because this definition [ . . . ] would be especially useful in construction
of the cohomology of a topological space in terms of sheaves”.

6.4.2.3 Mac Lane’s fix: locally small categories

Mac Lane makes it part of the definition of a category that Hom-collections are
sets (compare 6.4.1) but this feature is not sufficient for avoiding all problems
occuring in what he intends to do. Therefore, he introduces the concept of “locally
small” category. The intention of this concept is the following: starting with the
categories where the homological constructions are to be carried out, one tries,
for any finite number of objects, to pass to small subcategories such that the
constructions can already be carried out there; afterwards, these constructions are
lifted to the large categories; the “locally small” categories are more or less those
where this method can actually be applied. In principle, this anticipates already
the key idea of the later proposal to apply a reflection principle (6.6). The concept
is designed only for additive, resp. abelian, categories.

Mac Lane shows (p.39f) that the relevant module and sheaf categories are
locally small in this sense; this solves the problems in the Yoneda treatment of Ext
458To construct the object M of his theorem 1.10.1 (see 3.3.3.4), you have to find the least

ordinal whose cardinality is strictly greater than the cardinality of the set of subobjects of the
generator U . This does not look very much as if it admitted a constructive procedure.
459“pour pouvoir définir les foncteurs dérivés droits d’un foncteur covariant ou les foncteurs

dérivés gauches d’un foncteur contravariant, il faut supposer que tout objet A ∈ C est isomorphe
à un sous-truc d’un objet injectif, d’où on conclut en effet que tout A ∈ C admet une résolution
injective [ . . . ] 0 → A → C0 → C1 → · · · , d’où la définition des RiF (A) = Hi(F (C))”.



252 Chapter 6. Categories as sets: problems and solutions

and Tor and in Buchsbaum’s use of limits. To show it, he uses projective, resp.
injective, resolutions. This is an interesting detail: in the conditions occuring in
the definition of the concept of locally small category, certain objects had to be
found making a certain diagram commute (p.37); these objects now turn out to
be provided in the case of modules and sheaves since there are enough projective,
resp. injective, objects. Now, one of the set-theoretical problems pointed out by
Mac Lane earlier in his paper (which he aimed to resolve by the introduction
of the methods related to the concept of locally small category) was to pick out
projective or injective resolutions. Since Mac Lane certainly did not intend to
present a circular argumentation to an audience composed of celebrities, we can
conclude that he thought of different things in both cases: the actual picking out
of such resolutions leads to problems (if to adopt AC for proper classes counts
as a problem) while the proof for the existence of such resolutions achieved by
the use of limit cardinals (see 3.3.3.4) is perfectly acceptable. This indicates that
the existence of enough injectives etc. in the last analysis is (or rather contains)
a set-theoretical property, more precisely a size property, of the category under
consideration.

I find these observations worth some discussion. The difference employed is
not the one between constructive proof and existence proof since an application
of a version of AC certainly is nothing constructive. Rather, limit cardinals ap-
parently are treated as more acceptable than proper classes, perhaps since they
are considered as less “remote”; the insight is still absent that by “localizing” the
small/large-distinction in another way (namely by employing Grothendieck uni-
verses) the hierarchy of the two assumptions is turned upside down (AC then
becomes a mere consequence of the large cardinal hypothesis, probably even on
higher levels than the very first).

One can see in Mac Lane’s text why precisely certain categorial constructions
applied in certain situations lead to problems: simply because the constructions
just do not relate to the peculiarities of the objects present in the respective
situation. Let us illustrate this in the example of the problem concerning a limit
construction [1961, 34ff]. The objects of which the limit is to be constructed are
indexed by a class of exact sequences that turns out to be proper. Obviously, the
general limit construction does not take into account the peculiarity that the class
is composed of certain exact sequences, but it is this feature which makes the class
a proper class. The only thing important for the carrying out of the construction
is that one has a directed set, which means a partially ordered set with certain
additional properties. And you can check whether a given collection has these
properties without bothering about whether the collection is a proper class or
not. The problem only arises when you try to form the limit whose elements are
equivalence classes of objects which can be proper in the particular case. Hence,
CT loses its immunity against problematic totalities by “accompanying ontology”.
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6.4.3 Mitchell’s use of “big abelian groups”

[Mitchell 1965, 7] uses the term “locally small”, but in a manner different from
Mac Lane’s: each object A shall have a representative class C of subobjects (i.e.,
every subobject of A is isomorphic as a subobject to some member of C) which is
a set; here, subobjects and isomorphic subobjects are defined as in [Grothendieck
1957] (see section 3.3.4.1). Mac Lane disapproves of this terminology in [Mac Lane
1971a].

Mitchell’s solution is no more sufficient than Mac Lane’s above; on the other
hand, categories which are not locally small in Mitchell’s sense can nevertheless be
treated in “purely formal” manner. The example of the construction of Ext leads
Mitchell to the following consideration:

A logical difficulty (apart from the commonplace one that the members of
Ext1(C, A) may not be sets) arises from the fact that Ext1(C, A) may not be
a set. Of course if [the domain category] A is small, then Ext1(C, A) will be a
set. Likewise it can be shown that Ext1(C,A) is a set if A has projectives or
injectives (see [p.183ff]), or if A has a generator [ . . . ]. However, in order not
to restrict ourselves to any particular class of abelian categories, we introduce
at this point the notion of a big abelian group. This is defined in the same way
as an ordinary abelian group, except that the underlying class need not be a
set. We are prevented from talking about “the category of big abelian groups”
because the class of morphisms between a given pair of big groups need not be
a set. Nevertheless this will not keep us from talking about kernels, cokernels,
images, exact sequences, etc., for big abelian groups. These are defined in
the same set-theoretic terms in which the corresponding notions for ordinary
abelian groups can be described. Nor will we be very inhibited in speaking of
a big group valued functor from a category, and a natural transformation of
two such functors. In fact, it is precisely the aim of this section to show that
Ext1 is a big group valued functor [Mitchell 1965, 164].

6.4.4 The French discussion

6.4.4.1 The awareness of the problems

Set theory was barely, and certainly less than elsewhere, a central focus of research
in France460. However, the French community of category theory in the 1950s was
perfectly aware that there might be set-theoretical problems in the work with
categorial concepts461. In particular, the fact that a collection might cease to be a
set if it is supposed to contain as elements together with certain objects all objects
isomorphic to them was repeatedly stressed.

• Serre [1953b] develops the concept “classe de groupes” (for more detail, see
3.3.2.3); in this connection, he makes the following remark:

460See also 6.4.5.3.
461Evidence that there was some sensibility for set-theoretical problems in France is also pro-

vided for in the Bourbaki sources; see 6.4.4.2.
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Every group isomorphic to a group belonging to C belongs to C; this
proves obviously that C cannot be a “set”, and one cannot apply all the
usual properties of the relation ∈ to the relation A ∈ C. For example,
it would be pointless to write

Q
A∈C A462 [p.173].

• Also in the context of the group F (X) (intervening in the construction of the
Grothendieck group K(X)), such a problem is present:

Let X be an algebraic variety, and let F (X) be the free abelian
group whose base is the set C of coherent algebraic sheaves on X. [ . . . ]
By convention, one identifies two isomorphic sheaves (otherwise F (X)
wouldn’t even be a “set”!)463 [Borel and Serre 1958, 105].

• Grothendieck repeatedly makes use of the fact that for a construction that
is unique up to isomorphism one can always pick a representative from each
isomorphy class by “Hilbert’s τ ” ([1957, 123, 124, 133]; see 3.3.4.1). It seems
that he passed to representatives for isomorphy classes precisely to make
sure that he has to deal with a set instead of a proper class, in order to come
into a position to prove something by set-theoretical means464. He does not
presuppose the axiom of choice for proper classes.

Now, the concepts of arbitrary direct sum or product are central to Grothen-
dieck’s work in homological algebra. The existence of the first mentioned con-
struction (i.e., AB 3) is indispensable for the forming of a cohomology theory for
sheaves on arbitrary spaces in the sense of the Tôhoku paper, as we saw in 3.3.3.4.
Hence, situations like the one described by Serre (“it would be pointless to write∏

A∈C A”) cannot be tolerated465. Correspondingly, in the defining relations for
the concept of Grothendieck universes, the index set for infinitary constructions
is always taken from the universe (compare property U4 hereafter).

Grothendieck observed other problems in his work. When in [1955a, 48]
Grothendieck defines several categories of fibre spaces and functors between them
(compare section 3.3.2.2), he puts in quotation marks the word “function” in the
definition of the object function of the functors. This signifies that he made a
difference between class functions and set functions.

[Godement 1958, 17] has a proof that for presheaves F, F ′ in the sense of
the Tôhoku paper, Hom(F, F ′) is a set (and not a proper class). It was current
462“tout groupe isomorphe à un groupe de C appartient à C ; ceci montre évidemment que C

ne peut pas être un “ensemble”, et on ne peut donc pas appliquer à la relation A ∈ C toutes
les propriétés de la relation d’appartenance. Par exemple, il serait dépourvu de sens d’écrireQ

A∈C A”.
463“Soit X une variété algébrique, et soit F (X) le groupe abélien libre ayant pour base

l’ensemble C des faisceaux [ . . . ] algébriques cohérents [ . . . ] sur X. [ . . . ] On convient,
bien entendu, d’identifier deux faisceaux isomorphes (sinon, F (X) ne serait même pas un « en-
semble » !)”.
464Grothendieck stresses explicitly that the totality of the subobjects of an object A is a set if

the category has a family of generators 〈#16 p.137〉; he will need this fact later in the proof of
his key theorem, see 〈#17 p.138〉.
465This problem, despite being omitted from the discussion by Mac Lane, is similar to the

problem he discusses with respect to the concept of direct limit; see 6.4.2.2.
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to consider only categories which satisfy this condition (or to make the condition
part of the definition of the category concept, thus making the relation between
set theory and category theory more narrow; see 6.4.1).

Finally, Grothendieck comes close to a consideration of categories of func-
tors with domain categories not necessarily small. This problem is also discussed
implicitly by Mac Lane [1961, 34]. The proposition “the composition of functors
formally behaves like a bifunctor” mentioned by Grothendieck466 is not express-
ible in a foundation based on a distinction of sets and proper classes, as Daniel
Lacombe points out explicitly on p.7 of his report n°301 (see 6.4.4.2). Actually,
it is not quite clear what purpose such constructions could serve. Grothendieck
does not say what he would like to do with them467. From [Deligne 1998, 16] one
has the impression that large sites were used by Grothendieck for “interpreting
classifying spaces”—at least if the french « gros » used by Deligne means “large”
here. Sometimes the term is used in this sense, see 〈#30 p.257〉; normally, it means
rather “thick”, but I do not know of any technical term like “thick” categories (pace
the thick subcategories).

6.4.4.2 Grothendieck’s fix, and the Bourbaki discussion on set-theoretical
foundations of category theory

Grothendieck introduced his concept of universe during an internal debate of the
Bourbaki group (which shows eventually that Grothendieck is actually, and not
only reputedly, as Mac Lane said, the inventor of this notion). I reconstructed
the Bourbaki discussion on set-theoretical foundations of CT in [Krömer 2006b]
from the sources—together with other aspects of the group’s discussion on CT in
general; this reconstruction lent further support to the thesis that set-theoretical
foundations for CT historically had two stages, namely first NBG-type foundations
which at a second stage are recognized to be insufficient. In La Tribu 24 (1951.1)
p.3, they note under the heading Logique et Ensembles:

Some would like very much to “gödelize” for treating more comfortably
things like axiomatic homology and universal mappings, but they wonder if
classes and ε without restrictions put together will not be a nuisance. Fi-
nally, Cartan distrusts any ‘closed’ system where everything is given from the
beginning468.

466in [Grothendieck 1957, 125] where it reads “la composition de foncteurs se comporte formel-
lement comme un bifoncteur”. The use made here of the term formally (formellement) will be
discussed in 8.1.2.
467Mac Lane is not very explicit either when speaking about such constructions: “There are,

however, many properties of large categories [ . . . ] which can be effectively visualized in the
(superlarge (?)) category [of the functors between them]” [Mac Lane 1971a, 234]. If one sees
CT as the theory of functors (in the sense of Freyd, see 1.2.1.2), one might ask what purpose a
category which contains all objects of such a theory would serve.
468“certains ont bien envie de ‘gödeliser’ pour traiter plus commodément de choses comme

l’homologie axiomatique ou les applications universelles, mais se demandent si classes et ε sans
restrictions, mis ensemble, ne vont pas canuler. Enfin Cartan se méfie d’un système ‘fermé’ où
tout est donné dès le début”.
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“To gödelize” means to adopt NBG-type foundations, and ε is Hilbert’s choice
operator469; hence, Bourbaki thinks that there could be problems with adopting
the axiom of choice for classes. The debate enters the second stage in La Tribu 44
(1958.1) p. 2:

Despite the taciturnity of Cartan and of some of the youngsters, Cheval-
ley, Serre, Dixmier and Samuel think plainly that a solid logical base for
the operations one wants to carry out on categories and functors is needed.
The artificial device to restrict cardinals using some ad hoc trick (inaccessi-
ble alephs, for instance) was rejected. Gödel’s system was mentioned, but
Chevalley doubts that it is powerful enough470.

Again, doubts as to the power of NBG are expressed. What is interesting about
this passage is that inaccessible cardinals are mentioned for the first time in this
context. Certainly, they are rejected for the moment, but this decision will not
be definite. For the moment, Bourbaki decides to ask a “professional logician”,
namely Daniel Lacombe who had been consulted by Serre and Dixmier (La Tribu
45 p.6). Lacombe’s report has actually been written; it was incorporated in the
numbering of the rédactions as n°301 (it is not anonymous, contrary to most
rédactions, probably because Lacombe was not a Bourbaki member). In this paper,
Lacombe471 presents various possibilities to found CT set-theoretically, among
them a more sophisticated distinction between sets and classes and the idea to
represent illegitimate constructions by sufficiently small systems of representatives.
However, Lacombe notes that the proposition “the composition of functors formally
behaves like a bifunctor” is not expressible in terms of classes. As we have seen
above, this proposition is actually verbally taken from the Tôhoku paper. This
indicates that Lacombe worked on a version of this paper—for example the version
discussed in the Bourbaki meetings (see 3.3.1.1). Further, the very formulation
of the proposition indicates that Grothendieck was aware of the fact that the
proposition cannot be expressed in the language of classes (which is the set theory
implicitly used in [1957]).

Grothendieck was not satisfied by Lacombe’s proposals; he answered with the
paper n°307472. This manuscript begins with a rather long section explaining the
469denoted later τ by Bourbaki, compare n.286.
470“Malgré le quiétisme de Cartan et d’une partie des jeunes couches, Chevalley, Serre, Dixmier

et Samuel sont nettement d’avis qu’il faut une base logique solide pour les opérations qu’on veut
se permettre de faire dans les catégories et foncteurs. On rejette le procédé artificiel consistant
à limiter les cardinaux au moyen d’une astuce ad hoc (alephs inaccessibles par exemple). On a
évoqué le système de Gödel, mais Chevalley doute qu’il soit assez puissant”.
471While Lacombe participated in the 1959 Warsaw conference on infinitistic methods (cf. the

list of participants in [Bernays et al. 1961]), there is no evidence that his proposals as to the
foundations of CT submitted to Bourbaki influenced directly those presented by Mac Lane at
Warsaw (see 6.4.2) or were known at all to the latter. At least there is no trace of a corresponding
discussion between Mac Lane and Lacombe at Warsaw in the published version of Mac Lane’s
talk. Lacombe did not publish a talk given at this meeting.
472For the identification of Grothendieck as the author of this anonymous typescript, compare

[Krömer 2006b], where one also finds evidence for the claim that the paper was written after
July 58 and before March 59.
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strategy and the motivation for the technical development to follow. Since these
considerations are important for the philosophical interpretation of the method of
universes, they will be cited here at some length.

It is certain that one needs to be able to consider categories, functors, ho-
momorphisms of functors and so on . . . as mathematical objects on which one

#27can quantify freely and which one can consider as in turn forming the elements
of some set. Here are two reasons for this necessity: to be able to carry out
for functors the types of properly mathematical reasoning (induction and so
on . . . ), without endless complications installed in order to save the fiction of
the functor which is nothing but a specific metamathematical object; because

#28the sets of functors or of functorial homomorphisms, with the various natural
structures which one has on them (group of automorphisms of a given func-
tor and so on) obviously are mathematically important, and because many
structures (semi-simplicial structures and so on) are most naturally expressed
by considering the new objects to be defined as functors.

#29Thus, Lacombe’s ‘solution’ seems to be totally inadequate. On the other
hand, if one wants to introduce a new category of mathematical objects, the
classes which would be too large ‘sets’ to call them by this name, the only

#30way to distinguish them formally from the ‘true’ sets seemed to forbid them
being themselves elements of something [ . . . ]. However, we said that we
couldn’t tolerate such a prohibition. Hence we need to be able to consider
classes of classes, and it would be naive to believe that one could stop at this
second level. From now on, one doesn’t see any longer what distinguishes
the so-called classes, hyperclasses and so on from ordinary sets, both of them
being characterized by the collection of its elements and being elements of
other collections; the only difference is that in the mathematical universe
there appears a kind of natural filtration. The usual operations of set theory

#31(i.e., those resulting from the strict application of our Master’s axioms) will
not force us to leave a given level Ui of the filtration, and one needs new
operations like the one corresponding to the intuitive notion of ‘forming the
category of all objects’— more accurately, of all objects of Ui — to leave
Ui and to enter Ui+1. By virtue of what I just said, such operations could
only be carried out using a new axiom in set theory which will be formulated
later. Thus, the formalization of categories, contrary to what one might have
thought, in reality is done in a stronger theory than [usual] set theory. In this
theory each Ui could be considered as a model of the ‘weakened’ set theory.

[ . . . ] It is out of the question, just as it was before, to speak about the
category of ‘all’ sets, ‘all’ abelian groups and so on. . . , if it is not as purely
metamathematical objects473 .

473“Il est certain qu’il faut pouvoir considérer les catégories, foncteurs, homomorphismes de
foncteurs etc . . . comme des objets mathématiques, sur lesquels on puisse quantifier librement,
et qu’on puisse considérer à leur tour comme formant les éléments d’ensembles. Deux raisons
à cette nécessité : Pour pouvoir effectuer sans contrainte pour les foncteurs les types de raison-
nement (induction, etc . . . ) proprement mathématiques, sans interminables contorsions pour
sauvegarder la fiction du foncteur qui ne serait qu’un objet spécifié de la métamathématique ;
parce que les ensembles de foncteurs ou d’homomorphismes fonctoriels, avec les diverses struc-
tures naturelles qu’on a sur eux (groupe d’automorphismes d’un foncteur donné, etc) sont d’un



258 Chapter 6. Categories as sets: problems and solutions

In the sequel, some properties are enumerated which are stable under the pas-
sage of one universe to another; these properties are precisely those intervening in
[Grothendieck 1957] in the proof that there are enough injectives in certain abelian
categories. This suggests that universes are already necessary for this argumenta-
tion (or for a transfer of this argumentation to a different context). The crucial
property AB 5 and its dual involve sufficiently large families of families, compare
3.3.3.4.

The passage “The usual operations of set theory [ . . . ] will not force us to
leave a given level Ui of the filtration” 〈#31 p.257〉 allows one to foresee to some
degree the exact definition of the concept of (Grothendieck) universe. Such a
definition is contained not only in n°307, but also in [Sonner 1962], [Gabriel 1962],
SGA 1, SGA 4 (two texts: one by Grothendieck and Verdier (exposé I 1-4), one by
Bourbaki (exposé I 185-217)) and several texts by Mac Lane [1969, 1971a, 1971b],
to cite only the texts which appeared in the historical period under consideration
here. The different definitions agree more or less in calling a set U a universe if
and only if it has the following properties (the order is taken from the two texts
in SGA 4; the notation is mine):

U1. ∀X, Y : X ∈ U ∧ Y ∈ X → Y ∈ U (U is transitive);

U2. ∀X, Y : X, Y ∈ U → {X, Y } ∈ U ;

U3. ∀X : X ∈ U → P(X) ∈ U ;

U4. ∀I, X : I ∈ U ∧ X ∈ U I → ⋃
X ∈ U .

intérêt mathématique évident, et que bien des structures (structures semi-simpliciales, etc.) s’ex-
priment le plus naturellement en regardant les nouveaux objets à définir comme des foncteurs.

Aussi la ‘solution’ suggérée par Lacombe semble-t-elle tout à fait inadéquate. D’autre part, si
on veut introduire une nouvelle catégorie d’objets mathématiques, les classes, qui seraient des
‘ensembles’ trop gros pour qu’on ose les appeler par ce nom, la seule façon de les distinguer for-
mellement des ‘vrais’ ensembles semblerait d’interdire qu’ils puissent être eux-mêmes éléments
de quelque chose [ . . . ]. Or, on a dit qu’on ne pouvait tolérer une telle interdiction. Donc il faut
pouvoir considérer des classes de classes, et il serait naïf de croire qu’il sera possible de s’arrêter
à ce second cran. Dès lors, on ne voit plus ce qui distingue les soi-disantes classes, hyperclasses
etc. des vulgaires ensembles, étant tout comme ceux-là caractérisés par la collection de leurs
éléments et étant tout comme ceux-là éléments d’autres collections ; si ce n’est qu’il apparaît
dans l’Univers Mathématique une sorte de filtration naturelle. Les opérations coutumières de la
théorie des Ensembles (i.e. celles résultant de la stricte application des axiomes de Notre Maître)
ne font pas sortir d’un cran donné Ui de la filtration, et il faut de nouvelles opérations comme
celle correspondant à la notion intuitive de ‘formation de la catégorie de tous les objets’— plus
correctement, de tous les objets de Ui — pour sortir de Ui, et entrer dans Ui+1. En vertu de
ce qu’on vient de dire, de telles opérations ne pourront s’effectuer que moyennant un nouvel
axiome dans la théorie des Ensembles, qui sera formulé plus bas. Ainsi, la formalisation des
catégories, contrairement à ce qu’on a pu croire, se fait en réalité dans une théorie plus forte
que la théorie des Ensembles. Dans cette théorie chaque Ui pourra être considéré comme un
modèle de la Théorie des Ensembles ‘affaiblie’.

[ . . . ] Il ne peut pas être question, pas plus que par le passé, de parler de la catégorie de
‘tous’ les ensembles, ou de ‘tous’ les groupes abéliens etc. . . , si ce n’est encore qu’à titre d’objet
purement métamathématique”.
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Grothendieck’s proposal consists in adding to ZFC an “axiom of universes” assert-
ing that every set is contained in a universe; since universes are themselves well-
founded sets, this amounts to the postulation of an infinite sequence of universes
(or equivalently, as we will see, of an infinite sequence of strongly inaccessible car-
dinal numbers). One may now construe U -categories (which means, for example,
the category U -Grp of all groups in U rather than Grp) and the functor cate-
gories between them; this settles most of the problems, since the strong closure
properties of U make it a model of ZFC, and since, to stick to the example, every
group is contained in a universe (because of the axiom), so in a suitable U -category
of groups.

It is to be noted that the axiom of universes does not follow from ZFC, and
moreover that under the assumption of the axiom of universes, AC ceases to be
an axiom and becomes a theorem (see 6.4.5.2). This means that to assume this
axiom yields a strengthening of ZFC.

What is the relation of Grothendieck’s proposal to NBG? Grothendieck him-
self is quite explicit about it: he sees the restriction of NBG which prevents one
from taking proper classes as starting points of new constructions as mere con-
ventions and wants to ban this convention by the introduction of his axiom of
universes. Hence, there were two different reactions on the original observation
that some collections cannot be attributed to a fixed level in the cumulative hier-
archy: in NBG, one cancels arbitrarily certain strategies of manipulation; in the
case of Grothendieck universes, one rather keeps these strategies but tames the
constructions by supposing that there are stopgaps in the building up of the hierar-
chy. This assumption reflects that we do not know very much about the operations
constituting the hierarchy, and it has the advantage that it is not (or at least not in
an obvious manner) in conflict with the little we know about them. The hierarchy
itself is only a picture of how we believe the operations of set-forming to behave;
what is necessarily conventional are the decisions on how these operations behave
in “remote regions” (compare section 6.4.6.3). In this sense, both solutions, NBG
and Grothendieck universes, are purely normative, have nothing obligatory. The
most one can say is that the second solution is normative in a more subtle way.

Technically, one certainly loses nothing by giving up NBG in favour of uni-
verses. Freyd’s adjoint functor theorem uses the distinction of sets and classes
in an essential way, but one can express the theorem in terms of Grothendieck
universes. This is indicated by the following passage from Freyd’s discussion of
the role of the set-class distinction in the theorem: “True, there are languages for
mathematics which do not admit the distinction; and it is likewise true that such
languages either do not admit any interesting examples of complete categories, or,
if they do, have simply renamed the distinction (usually in terms of accessibility
of cardinals or of level of type)” [1964, 86].

I pointed out in [Krömer 2006b] how Grothendieck’s proposal was inter-
preted in the Bourbaki discussion (and how it should have been interpreted—but
apparently was not—according to Bourbaki’s official hypothetical-deductive po-
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sition)474. The key question (concerning relative consistency of Grothendieck’s
axiom with ZFC) is discussed in 6.4.6.1.

How did Grothendieck get the idea to consider universes? According to
[McLarty 2006b], “Serre suggests Grothendieck got the idea from Dieudonné or
Chevalley, who got it from earlier set theorists”. Indeed, the set-theoretical back-
ground was known to Bourbaki to some degree; in the exercises of the book E III
(§6 Ensembles infinis), they discuss initial ordinals, regular ordinals and cardinals,
and inaccessibles [Bourbaki 1956, 104]; McLarty suggests that Grothendieck read
the manuscript. However, were they also aware of Tarski’s characterization of
these cardinals (which makes the connection to Grothendieck universes obvious,
see below)?

Ironically, Grothendieck’s transition to a stronger set theory might very well
have given an impetus to the idea to eliminate underlying sets (or rather to consider
the existence of an underlying set of a mathematical construction as a contingent
feature). Sure, the transition to a stronger set theory at first glance rather stresses
than eliminates underlying sets, since it is these sets that call for a stronger set
theory; but we should not forget Grothendieck’s point of departure:

It is certain that one needs to be able to consider categories, functors,
homomorphisms of functors and so on . . . as mathematical objects on which
one can quantify freely and which one can consider as in turn forming the
elements of some set 〈#27 p.257〉.

(contrarily to, we might wish to add, “metamathematical” objects). Now, we saw
in section 5.3.2.1 how Lawvere relativized the property of a property to be ele-
mentary—and the example chosen by Lawvere 〈#19 p.220〉 concerns the infinitary
constructions of Grothendieck. But Grothendieck when claiming the right of free
quantification does nothing else than claiming the right to treat things “as if they
were elementary”.

A comment on Grothendieck’s use of the term “metamathematical” might
be at issue. It seems that when speaking about the “fiction of the functor which
is nothing but a specific metamathematical object” 〈#28 p.257〉, Grothendieck op-
posed directly Weil’s reproach (contained in a letter to Chevalley; see 2.3.4) that
the concept of functor is but metamathematical vocabulary. (For a closer dis-
cussion of the passages quoted, the use of the term “métamathématique”, and the
conflict between Weil and Grothendieck, see my above-mentioned paper.) Inciden-
tally, it might even be that Grothendieck was inspired to choose the term “univers”
by Weil’s letter or by drafts of Bourbaki’s book on set theory to which the letter
relates.

Incidentally, one might have the impression that Bourbaki and Grothendieck
do some injustice to Hilbert when putting it as if calling an object “metamathe-
matical” would mean that this object cannot be submitted to all the operations
of usual mathematics; Hilbert conceived metamathematics rather as an activity
which analyzes mathematics (which is considered as a meaningless game with
474See section 6.4.6.1.
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signs) employing methods which are intuitively justified. Hence, for Hilbert meta-
mathematics in some sense had a richer epistemological status compared to math-
ematics while Bourbaki and Grothendieck seem to suggest that it has a defective
one. But I think that they did not want to make an epistemological statement;
they just spoke about functors as metamathematical objects since they are used
to describe other mathematical constructions in the Eilenberg–Mac Lane view
(category theory as a language). Grothendieck’s dissatisfaction with this is again
that he does not want merely to describe but wants to go a step further, wants
to transform the language into a tool (see 3.4.3.2). Hence, I think that this ex-
plains the terminology (it is true, after all, that Hilbert’s metamathematics also
serves to describe other pieces of mathematics), but it shows also for which reason
the terminology is a bad one: describing obviously is but one aspect of Hilbert’s
metamathematics (and certainly not the central one).

6.4.4.3 Grothendieck universes in the literature: Sonner, Gabriel, and SGA

While Grothendieck came to his ideas perhaps around the end of 1958 (compare
n.472), the first work mentioning Grothendieck universes published by Grothen-
dieck himself is SGA 1 which appeared first in print 1971; this fact sheds some light
on Grothendieck’s personality, who, despite being one of the most influential and
innovative mathematicians in the late 1950s and the 1960s, was very indifferent
to publication: many of his important ideas and works were available only as
manuscripts for a long time and had finally to be printed years later because of
their great and constant interest.

Sonner’s paper [Sonner 1962] is the first publication where universes are applied
in foundations of CT. He starts with the set–theoretic axioms of Bourbaki, replac-
ing A5 (there is an infinite set) by a version of the axiom of universes. Sonner
was aware that Grothendieck was reputed to have ideas similar to his own (see
[Sonner 1962, 163]); it is to be assumed that Sonner simply read Mac Lane’s pa-
per [1961] carefully enough (Sonner was not a participant at Warsaw, but he cites
Mac Lane’s paper). It is indeed astonishing that Sonner seems to have invented
universes independently of Grothendieck (but relying on earlier work by Tarski,
see below); maybe he was in some contact with Bourbaki members around the
time.

Gabriel’s use of universes Gabriel is the first author who speaks of “Grothen-
dieck universes” [1962]. On p.328, Gabriel says “We choose once and for all a
universe U which will never ‘vary’ in what follows”475 , but this does not mean
that one universe is enough; it simply means that all constructions are relative to
a universe, and one could re-read the whole paper by replacing one universe by

475“Nous choisissons une fois pour toutes un univers U qui ne ‘variera’ pas dans tout ce qui
suit”.
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another, thus obtaining a new set of theorems as far as the ontology of the objects
of these theorems is concerned—but what counts, rather, is that this ontology is
not concerned in the theorems which Gabriel wants to prove : he proves, so to say,
theorem schemes. In this sense, the method of Grothendieck universes is more
conscious about ontological commitments than the NBG method. The choice of
a universe does not stop some constructions from transcending the universe once
chosen (we will discuss below an example from p.342); if this were not the case,
the whole talk about universes would be superfluous, after all.

Gabriel introduces some conventions concerning universes which we will have
to keep in mind:

From now on, we say that a category C is a U-category if HomC(M, N)
is an element of the universe U for every couple (M, N) of objects of C. If
nothing contradictory is mentioned expressly, all categories considered in this
paper are U-categories476 [p.330].

These conventions rephrase the Hom-set condition in terms of universes; more
precisely, instead of distinguishing just between small and large Hom-sets (and
retaining only the small ones), one distinguishes between Hom-sets for each level
of the hierarchy of universes. In the sequel to Gabriel’s text, all the usual con-
structions (inductive systems, direct sums etc.) are relativized to U. A first case
where things become more complicated is when he discusses a proposition 12 giving
equivalent conditions for the existence of an equivalence between given categories
A and B. In this context, he says:

If B is a universe which has the universe U as an element, we can construct
a new category E: the objects of E are the categories whose set of morphisms
is element of B (one identifies the objects with the identity morphisms); if
A and B are two objects of E, Hom(A, B) is the set of isomorphy classes of
functors from A to B, composition being carried out in the obvious manner.
One observes that E is not a U-category. Assertion (c) [of proposition 12]
affirms that the class of functors isomorphic to T [the functor from A to B
establishing an equivalence of these categories according to this proposition]
is an isomorphism of the category E477 [p.342].

Hence, the category of categories E is constructed in a way that equivalent cate-
gories are isomorphic in the sense that in E there is an isomorphic arrow between
them (see also 5.4.4.2). Gabriel does not say what an isomorphic arrow is, but

476“Nous dirons dorénavant qu’une catégorie C est une U-catégorie si HomC(M, N) appartient
à l’univers U pour tout couple (M, N) d’objets de C. Sauf mention expresse du contraire, toutes
les catégories considérées dans cet article sont des U-catégories”.
477“Si B est un univers dont l’univers U est un élément, nous pouvons construire une nouvelle

catégorie E : Les objets de E sont les catégories dont l’ensemble des morphismes appartient à B
(on identifie les objets aux morphismes identiques) ; si A et B sont deux objets de E, Hom(A, B)
est l’ensemble des classes d’isomorphisme de foncteurs de A dans B, la composition se faisant
de façon évidente. On remarquera que E n’est pas une U-catégorie. L’assertion (c) affirme que
la classe des foncteurs isomorphes à T est un isomorphisme de la catégorie E”.
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probably one can take the term in the sense explained in the Tôhoku paper; see
p.329.

On p.345f, he introduces functor categories Hom(C,D) where C is a category
whose class of objects and whose class of arrows are elements of U; this is some-
thing smaller than a U-category in Gabriel’s terminology, and he has to make this
restriction if he wants Hom(C,D) to be a U-category. For an arrow of Hom(C,D)
is a natural transformation between two functors, which means a class of arrows,
one for every object of C, and the collection of all arrows for a pair of objects of
Hom(C,D) is the collection of all these classes, hence belongs to U only for cate-
gories C with the above property (since U is closed under infinite union only for
index sets in U). This is essentially the same problem as that which was discussed
already by Mac Lane (see 6.4.2.2), and it is for this reason that one needs several
universes.

The task of universes in SGA At the stage of SGA, Cat and different types of
functor categories are used; see 5.4.4.1 as far as Cat is concerned. It is at the
heart of the Grothendieckian program to embed a category in the category of its
sheaves (4.1.2.3)—and for this one needs the collection of all coverings (a family
of families).

Segal’s method of classifying space (see [1968], and 5.4.3 for some discussion)
a priori works only for small categories; on a “purely formal” level, one can con-
struct from the nerves of two (arbitrary) categories C, C′ the nerve of HomCat(C, C′)
(the category of functors) as the inner-hom object of the category of simplicial
sets; [Gelfand and Manin 1996, 105]. Grothendieck universes make available such
methods since there, all categories considered are small “somewhere”.

6.4.5 The history of inaccessible cardinals: the roles of Tarski and
of category theory

The method of Grothendieck universes is certainly the most common set-theoretical
foundation of CT. Both for the history and the interpretation of this method, it is
important to discuss some aspects of its set-theoretical context, i.e., the theory of
a certain type of large cardinals. On the one hand, the concept of Grothendieck
universe is related to the concept of strongly inaccessible cardinal—and the latter
concept was discussed from 1908 on; here, especially the contributions by Alfred
Tarski in the 1930s are of interest since he gave for the first time a characterization
of strongly inaccessible cardinals making use of a concept similar to the concept
of Grothendieck universe; these contributions will be discussed in the subsequent
sections. On the other hand, to put the philosophical debate related to Grothen-
dieck’s somewhat bold axiom in perspective, it is useful to recall some more recent
developments in the theory of large cardinals stemming from the work of Cohen
on the independence of the continuum hypothesis; this will be done in 6.4.6.3.
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6.4.5.1 Inaccessibles before 1938

Alfred Tarski gave a detailed account of the work on inaccessibles written before
1938; see [Tarski 1938] n.1-4. Already in 1908, Felix Hausdorff asked for the first
time whether there are weakly inaccessibles478. It is also interesting to read Haus-
dorff’s opinion in the 1914 Grundzüge der Mengenlehre concerning the usefulness
of these cardinals:

If there are [ . . . ] any regular beginning numbers whose index is a limit
number, the smallest of them would be so tremendously large that it cer-
tainly would never be of any interest for the usual purposes of set theory479

[Hausdorff 1914, 131].

This passage reads different in the 1927 Mengenlehre; actually, the wording is “No
regular beginning numbers whose index is a limit number are known; they would be
tremendously large”480 [Hausdorff 1978, 85]. Maybe this indicates that Hausdorff
in 1927 was no longer persuaded that these numbers would be too large for the
usual purposes of set theory481.

Also in [Fraenkel 1928, 310], existence and consistency of reguläre Anfangszahlen
mit Limeszahl-index is treated as an open question, not as an additional axiom.
The notion of strongly inaccessible cardinal was defined by Tarski and Sierpiński in
a joint paper [Tarski and Sierpiński 1930, 292]. [Zermelo 1930, 33] gives a substan-
tial application of such an “exorbitant” number (referring explicitly to Hausdorff’s
1914 statement).

6.4.5.2 Tarski’s axiom a and its relation to Tarski’s theory of truth

In his 1938 paper, Tarski replied to Hausdorff’s dictum in saying that in the mean-
time the inaccessibles had become much more important (and he referred to the
relevant literature). On p.69 of the paper, Tarski defines the property of a cardinal
to be strongly inaccessible (he called it “im engeren Sinne unerreichbar”); he goes
on with proving some theorems about this notion, culminating in an alternative
characterization (“Satz 20”, p.82; see also p.84). Since I wanted to avoid nota-
tional preliminaries, the following account of this theorem is not a quotation but
a paraphrase.

Given a set N with card(N) = n (where n is some cardinal) a cardinal m > n
is strongly inaccessible iff there is a set M with card(M) = m such that
478“Die Frage, [ . . . ] ob es [ . . . ] reguläre Anfangszahlen mit Limesindex gibt, muß hier unent-

schieden bleiben” [Hausdorff 1908, 443].
479“Wenn es [ . . . ] reguläre Anfangszahlen mit Limesindex gibt, so ist die kleinste unter ihnen

von einer so exorbitanten Größe, daß sie für die üblichen Zwecke der Mengenlehre kaum jemals
in Betracht kommen wird”.
480“Reguläre Anfangszahlen mit Limesindex sind bisher nicht bekannt; sie müssten von exor-

bitanter Grösse sein” [Hausdorff 1927, 73].
481On the relation between the 1914 and the 1927 book see also Walter Purkert’s historical

introduction to [Hausdorff 1914] in the complete edition [Hausdorff 2002, 61]; the so-called second
edition in reality is a new book in which Hausdorff gave a completely different emphasis in the
new version of the book (mainly metric spaces and descriptive set theory).



6.4. The problems in the era of Grothendieck’s Tôhoku paper 265

a1. N ∈ M ,

a2. ∀X, Y X ∈ M ∧ Y ⊂ X → Y ∈ M ,

a3. ∀X X ∈ M → P(X) ∈ M ,

a4. ∀X X ⊂ M ∧ card(X) �= card(M) → X ∈ M .

Tarski postulates the axiom that for any N there is an M having the properties
a1–a4. This axiom guarantees, via the theorem, the existence of arbitrarily many
strongly inaccessible cardinals; in the sequel, I refer to the axiom as “Tarski’s
axiom” or simply as a (the name given to it by Tarski). Tarski goes on with
proving that from ZF + a one deduces AC (p.85f).

Moreover, he puts the axiom in the context of his theory of truth [1935] when
he says:

It would be misleading to think that the axiom a can play a role only
in highly abstract set–theoretical investigations. For one can build up pure
arithmetic inside Zermelo–Fraenkel set theory. Therefore, one can, following
the method developed by Gödel, construct certain propositions which are
formulated entirely in terms of pure arithmetic and which can neither be
proved nor refuted on the grounds of Zermelo–Fraenkel set theory. However,
these propositions become decidable when assuming a482 [Tarski 1938, 86].

This idea is obviously similar to Gentzen’s, but somewhat more “expensive” (Gentzen
manages to achieve his goal exclusively with ordinals, everything staying count-
able). Tarski refers explicitly to [Tarski 1935] p.397 n.106 and p.400ff—the famous
passage defending the thesis that there is a truth definition for a language in a
metalanguage if and only if this metalanguage is stronger than the language itself.

One should note the precise relation between Tarski’s axiom and the defi-
nition of a universe given earlier. It is not hard to see that a universe has also
the property a2. a4 in turn is a stronger requirement than U2, as Sonner points
out (cf. [Sonner 1962, 166]), so the fact483 that the cardinality of a universe is
strongly inaccessible does not follow immediately by Tarski’s Satz 20. Conversely,
the property U4 seems not to be contained in Tarski’s list, but it serves obviously
an important purpose in CT (Grothendieck’s infinitary constructions).

Tarski was aware of the fact that a does not follow from ZFC; see [Tarski
1938] p.84 n.3). Drake puts it this way: “it [is] consistent with ZFC to assume that
there are no inaccessible cardinals other than ω” ([Drake 1974] p.67).

482“Es wäre irrig zu meinen, daß das Axiom a lediglich in höchst abstrakten mengentheo-
retischen Untersuchungen eine Rolle spielen kann. Man kann ja innerhalb der Zermelo–
Fraenkelschen Mengenlehre [ . . . ] die reine Zahlentheorie aufbauen. Man kann deshalb nach der
von Gödel entwickelten Methode gewisse Sätze konstruieren, die gänzlich in Termen der reinen
Zahlentheorie formuliert werden und die sich auf Grund der Zermelo–Fraenkelschen Mengen-
lehre weder beweisen noch widerlegen lassen; diese Sätze werden aber entscheidbar, falls man
[ . . . ] a [hinzunimmt]”.
483for a proof, see SGA 4 exposé I p.3 or [Williams 1969].
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6.4.5.3 A reduction of activity in the field—and a revival due to category theory?

Despite Tarski’s claim concerning the importance of the concept, there has been
very little activity between [Tarski 1938] and the early 1950s, if one trusts in the
section on large cardinals (E55) of the Ω-bibliography (one should do this with
caution, since many papers mentioned in Tarski’s own bibliographical account
are contained in other sections of this bibliography, certainly for the reason that
large cardinals were not the principal concern of these papers). Moreover: a large
part of the material published until the 1960s actually was published by Tarski
and coauthors. And typical papers are not concerned with the axiom a, but
with equivalent characterizations of a different kind, like [Tarski 1939] or [Łoś
1961], or with the question whether certain properties of accessibles stay valid for
inaccessibles, like [Erdös and Tarski 1961] or [Keisler and Tarski 1963]. During this
period, the importance of large cardinals for fundamental research in set theory
was only stressed by [Gödel 1947, 520], it seems; see also [Zermelo 1930].

Today, however, Hausdorff’s 1914 opinion cited in section 6.4.5.1 is no longer
the dominant one. One major stimulus for the increase of interest in large cardinals
certainly came from Cohen’s striking results; see section 6.4.6.3 below. But in the
particular case of inaccessible cardinals, also the rise of the foundational problems
of CT in the late 1950s was not irrelevant to this increase. Sonner, one of the
first authors to apply Tarski’s axiom in this context, refers explicitly to Tarski; his
explicit intention is to “revive Tarski’s ideas” [1962, 175]. See also [Drake 1974,
viii, 315].

This shift is particularly interesting with respect to the situation in France.
Among the positive effects of the introduction of Grothendieck universes, [Blass
1984, 7] mentions that “this approach [ . . . ] made inaccessible cardinals popular
in France”. He certainly alludes here to the generally rather modest interest
in set-theoretical questions in France484. One can somewhat differentiate this
observation on the background of unpublished sources. When the text n°307
and the following texts adopt inaccessibles, this is obviously motivated from the
intended mathematical applications (in explicit disassociation from the enterprise
of Lacombe which is of a more metamathematical nature). This means that there
was not really an increase of interest in set-theoretical questions considered as
relevant by set theorists; this observation will be important below.

6.4.6 Significance of Grothendieck universes as a foundation for
category theory

The postulations of an axiom of universes, starting with Tarski’s, have different
motivations and justifications, depending on who is postulating: set theorists or

484[Corry 1996, 316], when describing the emergence of Bourbaki’s text on set theory, says
“the original idea was to use only elementary set-theoretical notions, introduced from a naive
perspective, such as the direct needs of a treatise on analysis would require. This approach
reflected a longstanding tradition with respect to set theory in France”.
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category theorists. Correspondingly, when the two groups are discontent with the
achievements of this axiom, they are so for different reasons, respectively. I will
discuss the problems from the viewpoint of the categorists in section 6.4.6.2 and
from the viewpoint of the set theorist in section 6.4.6.3. The subsequent section
is devoted to a more particular discussion: the place of the axiom in Bourbaki’s
philosophy of mathematics.

6.4.6.1 Bourbaki’s “hypothetical-deductive doctrine”, and relative consistency of
a with ZF

If mathematics rests on sets, the question of the consistency of axiomatic set theory
comes to the fore. As is well known, Hilbert originally wanted to prove consistency
for the ideal elements of mathematics, going beyond those which are inhaltlich485

by an inhaltliche (in particular a finite) proof theory. Gödel did point out in [1931]
that such a proof is not possible by finite means, more precisely that consistency
of ZF cannot be decided inside ZF. In particular, ZF could be inconsistent; but this
could only be proved by finding one day a contradiction which has not been the
case to this day. Bourbaki’s reaction on the observation that a consistency proof
for formal set theory is impossible is to adopt a hypothetical-deductive position: if
there is no consistency proof for a system, it is considered as “secure” if it has been
tested over and over again in applications486; when problems occur, one looks for
ad hoc solutions487. Bourbaki adopts this position explicitly in the introduction of
Théorie des Ensembles, see [Bourbaki 1954, 9], as well as in the talk Foundations
of mathematics for the working mathematician [Bourbaki 1949], given by André
Weil as a representative of the group (see n.399):

Absence of contradiction, in mathematics as a whole or in any given
branch of it, [ . . . ] appears as an empirical fact, rather than as a metaphys-
ical principle. The more a given branch has been developed, the less likely

485A tentative translation of the German adjective inhaltlich employed by Hilbert would be
“those related to some content”. If you prefer to learn instead the language game at hand,
compare [Hilbert 1922] where he is quite explicit about how he intends the term to be used: on
p.164, he explains, taking a and b as Zahlzeichen (signs) for natural numbers, how the fact that
a+ b = b+ a as a proposition about signs can be proved by inhaltliche considerations (i.e., by
considerations concerning the decomposition of the signs the truth of which is obvious), and on
p.165 he stresses that such a procedure is not possible when propositions about infinitely many
objects are aimed at. The difficulty of translation is also present in Kreisel’s work; see 1.3.1.4.
486This is not the only way in which one can come to the conviction that ZF is consistent. In

the view of Kreisel, expressed on p.110 of the German version of his article on the formalist-
positivist doctrine [1974], Zermelo in his paper [1930] provides a compilation of evidence for the
consistency of ZF.
487More systematic (but perhaps unsatisfactory) solutions were proposed, for instance construc-

tivism and predicativism. Gentzen proposed not to give up the project of consistency proofs but
to enlarge rather the Hilbertian concept of “ inhaltlich”, i.e., to admit transfinite induction up
to some appropriate ordinal (actually, ε0 is appropriate for elementary arithmetic, and Γ0 for
real analysis, as Feferman showed). Contrary to the original Hilbertian project of a fundamental
proof theory, this constituted the project of a general proof theory, trying to answer the question
“what is needed minimally for a consistency proof?” in various cases.
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it becomes that contradictions may be met with in its further development
[Bourbaki 1949, 3].

The position was of considerable influence; for instance, proofs of relative con-
sistency (proofs that to make such and such assumption is consistent with ZF)
became quite important488. Relative consistency is related to the hypothetical-
deductive epistemology insofar as the latter consists in saying that “it works since
nothing happened despite extensive testing”; one can trust the usual (and that
means here: the multifariously used) existence assumptions. This (already quite
restricted) certainty is lost, obviously, if one adopts new axioms which have not yet
been subject to any testing and which do not admit a proof of relative consistency.

It would be interesting, hence, to know whether a is relatively consistent
with ZF. Unfortunately, this relative consistency is undecidable. A proof of this
fact can be found in [Kunen 1980, 145]. This was a matter not yet known to early
workers in the field; in an appendix to SGA 4 concerning universes (the author
of which is Nicolas Bourbaki), we read: “it would be quite interesting to show that
the axiom [ . . . ] of universes is not offensive. This seems difficult, and it is even
unprovable, says Paul Cohen”489 (SGA 4 exposé I p.214). [Kruse 1965, 96] merely
says that relative consistency is “suspected with conviction”.

This fact (or rather, from Bourbaki’s perspective in the late 1950s, the fact
that the question is open) might very well have played a role in Bourbaki’s rejection
of categories. However, I did not find explicit evidence for this in the sources
covering the Bourbaki discussion (see [Krömer 2006b]).

Hence, Grothendieck adopts a position beyond the hypothetical-deductive
one: he does without a reduction on the well-tested by a proof of relative con-
sistency; the last remaining “warranty” is perhaps that the axiom was adopted
precisely to avoid (known) contradictions arising from naive CT. In all, he seems
to have a position of indifference, relying on his “intuition” (his flair, or stocked
experience) as far as consistency is concerned (see also 〈#36 p.297〉). He rather
is interested in whether a concept is the “right” one; criteria for this are, e.g., the
possibility to prove important theorems by the mere unfolding of the concept, the
possibility to establish an analogy between disciplines (in order to “share meth-
ods”), the degree to which the information necessary for an efficient use of the
concept is actually available.

Other proposals behave differently with respect to relative consistency. Re-
flection principles (6.6) automatically provide a proof of relative consistency (in
the form of a metatheorem saying that certain extensions of the language frame
are conservative); this may be the crucial advantage of this proposal in the eyes
of logicians. Sonner [1962, 163] and Ehresmann (see 6.5) accept adoption of ad

488Bénabou, among the conditions he imposes on a foundation of CT in order to be acceptable
(see 7.4.2), adopts the stipulation of relative consistency and labels ZF a “safe” theory: “ “foun-
dations”[ . . . ] for category theory [should be] consistent, or at least relatively consistent with a
well-established and ‘safe’ theory, e.g. [ . . . ] ZF” [Bénabou 1985, 10].
489“Il serait très intéressant de démontrer que l’axiome [ . . . ] des univers est inoffensif. Ça

paraît difficile et c’est même indémontrable, dit Paul Cohen” .
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hoc solutions in the case a contradiction occurs. Gabriel clearly separates the
hypothetical-deductive method from its minimal epistemological stipulation (to
have been approved in many tests) when saying that it is convenient to add a new
axiom to the usual axioms of set theory490.

6.4.6.2 Is the axiom of universes adequate for practice of category theory?

You can have at least two attitudes towards technical matters: you can hide behind
it (then you will like it because it gives you shelter) or you can be repelled by it
(then you may have the feeling that someone else hides behind it). Your attitude
towards a particular piece of technical matter depends on your training. Category
theorists feel repelled by tedious set-theoretical technics intervening in foundations
for category theory; they postulate the axiom of universes to gain freedom in the
construction of objects.

However, the axiom of universes to a certain degree is not satisfactory from
the point of view of category theorists, since it “leads to complications attendant
upon change of universes” [Mac Lane 1969, 193], or, as Feferman expressed it:

Whatever the intrinsic plausibility of such axioms, they seem to have
nothing to do with the actual requirements of category theory but only with
the particular formulation adopted. For example, some questions of trans-
ferring results about one universe to another arise which seem difficult but
irrelevant [Feferman 1969, 201].

Bénabou is somewhat more explicit concerning the irrelevance of these complica-
tions: “as soon as U is big enough, the properties of the Yoneda embedding of a
category C into the category of functors from the dual Cop into the category of sets
in U (e.g., it is full and faithful) do not depend on U, and are ‘purely formal’ ”
〈#39 p.298〉. The restrictions are imposed on CT from outside; they are a kind of
alien element.

A possible reaction on this observation is to check whether the adoption
of the axiom is really necessary (one such check was undertaken by Kreisel; see
6.6). SGA 4 adopts it probably too quickly; [Johnstone 1977, xix] writes: “I have
limited myself to considering sheaves only on small sites; this [ . . . ] is [ . . . ] not
as irksome as the authors of [SGA 4] would have us believe”.

6.4.6.3 Naive set theory, the “universe of discourse” and the role of large cardinal
hypotheses

In the last analysis, the set-theoretical difficulties of category theory concern the
universe of discourse of mathematics—and so do large cardinal axioms. In 1947,
when category theory was not yet discussed by set theorists, Gödel gave the fol-
lowing suggestive description of the relation between the universe of usual math-
ematical discourse and set-theoretical antinomies:
490“il convient d’ajouter aux axiomes habituels de la théorie des ensembles un axiome” [1962,

328].
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As far as sets occur and are necessary in mathematics (at least in the
mathematics of today, including all of Cantor’s set theory), they are sets of
integers, or of rational numbers [ . . . ], or of real numbers [ . . . ], or of functions
of real numbers [ . . . ], etc.; when theorems about all sets (or the existence
of sets) in general are asserted, they can always be interpreted without any
difficulty to mean that they hold for sets of integers as well as for sets of real
numbers, etc. [ . . . ]. This concept of set, however, according to which a set
is anything obtainable from the integers (or some other well defined objects)
by iterated application of the operation “set of”, and not something obtained
by dividing the totality of all existing things into two categories, has never
led to any antinomy whatsoever; that is, the perfectly “naïve” and uncritical
working with this concept of set has so far proved completely self-consistent
[Gödel 1947, 518f].

Feferman describes how the situation changed with the advent of category theory:

For mathematical practice it was sufficient to take it that all sets [ . . . ] to
be considered belong to some universe U of sets closed with respect to certain
operations. When setting up a formal theory, mention of U was not needed
because all quantifiers are tacitly supposed to range over such a U . [ . . . ] U
[ . . . ] was not essential for mathematical practice because no operations were
carried out on U [ . . . ].

Category theory introduced a novel element in mathematical practice in
that beside such a tacit universe U , one also had distinctions between small
and large categories or, as specifically suggested by Grothendieck [ . . . ], dif-
ferent kinds of universes [Feferman 1969, 201].

More precisely, it was Grothendieck’s CT that included constructions on the cat-
egories themselves while the CT as practiced by Eilenberg and Mac Lane belongs
largely to Feferman’s former stage of mathematical practice. The name universe
chosen by Grothendieck tends to even out the difference between the informal
concept (universe of discourse) and the formal notion (totality of sets closed with
respect to certain operations). Grothendieck certainly does not think that to each
universe in the technical sense corresponds a universe of discourse; he rather con-
siders the whole universe of sets “created” by the axiom of universes as the universe
of discourse.

But the real problem is whether there can really be said that only one such
universe “exists”, and if not so, which are the criteria to choose among several pos-
sible candidates. These matters are strongly related to Cohen’s results concerning
the continuum hypothesis491. In the sequel, I rely mainly on a talk given by Sy
Friedman on the annual DMV meeting in 2002 with the title “Cantor’s set theory
from a modern point of view” [Friedman 2002].

Zermelo’s idea was to accept only well-established principles for the construc-
tion of sets492. What is interesting here is that Zermelo’s project put an accent
491contained in [Cohen 1963, 1964]. See also [Jensen 1967, 45ff] and [Engeler 1993, 40f].
492The official history is that this doctrine had the aim to overcome the antinomies; [Mehrtens

1990] seems to challenge this official history. I will not enter such a discussion here.
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on the operations for the construction of sets. As Bernays puts it:

Contrary to most applications of the axiomatic method, the axiomatiza-
tion of set theory is not intended to describe the system of sets as a certain
structure. The axiomatization only serves to fix some minimal requests for
set-theoretical operation493 [Bernays 1961, 11].

This puts CH in an interesting light: The von Neumann hierarchy V emerges
by cumulative iteration of the power set operation P. The fact that CH is a
hypothesis and not a theorem indicates a kind of vagueness in our understanding of
what this operation actually does (since CH is a proposition about the cardinality
of P(ω)). Both descriptive set theory and Gödel’s idea of constructibility [1940]
were attempts to overcome this vagueness. In Gödel’s case, the scope of P is
weakened: instead of accepting all subsets, one only accepts those definable in
first-order terms. This yields a model L of ZFC where CH is valid.

Cohen’s idea was to add sets to L maintaining the validity of ZFC—until
CH becomes false. The first conclusion to be drawn here is that the lack in our
understanding of the sequence of cardinals does not concern a universe of sets given
a priori, but the operations we can perform to construct the sets. The second is
that the main challenge to the belief that there is a unique universe of discourse
sufficient for mathematical practice was not the fact that CT needs several levels
of universes, but the Cohenian perspective of universes in competition.

Now, mathematicians not primarily interested in axiomatic set theory use
set theory naively (in the sense of Halmos494), which means, work as if there were
only one universe of discourse. This is even true for those who work with a whole
tower of (Grothendieck) universes (universes in the technical sense): for them,
the axiomatization ZF + a characterizes “the” universe (of discourse), and a is
a proposition concerning the inner structure of this universe (saying roughly that
there are subuniverses closed under certain operations of forming sets). But if we
do not really know what the operations do, we cannot really know either what it
means to be closed under these operations.

Before describing the further development of the search for models of set
theory after Cohen’s result, it is interesting to consider how this result relates to the
fact (known since Skolem) that ZF is not categorical. Comparing Cohen’s result
with Skolem’s, [Bell 1981b, 411] says that “the resulting ambiguity in the truth
values of mathematical propositions [in the case of Cohen’s result] was regarded by
many set-theorists (and even by more ‘orthodox’ mathematicians) as a much more
serious matter than the ‘mere’ ambiguity of reference of mathematical concepts

493“Im Unterschiede von den meisten Anwendungen der axiomatischen Methode, hat die Axio-
matisierung der Mengenlehre nicht den Sinn, das System der Mengen als eine bestimmte Struk-
tur zu beschreiben. [ . . . ] [Es] handelt sich [ . . . ] bei der Axiomatisierung nur um eine Fixierung
von Mindestforderungen für das mengentheoretische Operieren” .
494In [1969, 7], Paul Halmos makes a distinction between naive set theory and axiomatic set

theory. He compares his book with a geometry text treating only one system of axioms (for
instance, the euclidean axioms) while axiomatic set theory corresponds rather to the comparison
of different such systems.
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already pointed out by Skolem” (Bell’s emphasis). Again, we could express the
difference in terms of set operations: we not only ignore on what we actually
operate, but we even ignore what exactly happens when we operate. (Actually,
there is some discussion whether this difference really is to be made. Gerhard
Heinzmann, in his report on the German version of the present book, argues
against this interpretation:

[According to this interpretation], the non-categoricity of ZF does only
imply an ambiguity in reference while the undecidability [of CH] implies an
ambiguity in signification. In my opinion, Beth [[1959, 515]] advances a con-
clusive argument against this interpretation: it is clear that a proof of cat-
egoricity always implies an isomorphism between models in relation to the
model of the set-theoretical framework used; but if set theory is not categori-
cal—and it actually is not if it has a model—the very notion of standard model
is relative to the underlying model of set theory, which yields an ambiguity
in signification495 .

Anyway, if Beth’s argument is right, my pragmatist epistemology finds additional
support insofar as no difference is to be made between act of construction and act
of justification.)

Let us take up the thread in reading Friedman’s description of how the situ-
ation further developed:

We are faced with a dilemma: Must we accept different universes with
different kinds of mathematics; universes where CH holds and universes where
it does not? This kind of undecidability is certainly very troubling, and has
led set theorists to search for a canonical, acceptable[496 ] interpretation, or
standard model, of ZFC which provides the ‘correct’ answers to undecidable
problems. Gödel’s L is surely canonical, but rejected as being too restric-
tive, given the ease with which it can be modified by forcing. Unfortunately
Cohen’s models are not canonical: If there is one Cohen (random) real over
L, then there are many. How does one obtain canonical universes which are
larger than L? [p.4].

The sequel to this history, involving work on so-called measurable cardinals by
Scott, Solovay, Silver and Woodin, among others, is told in Friedman’s talk. It
seems actually that Woodin has the project to give a canonical and acceptable
model in which ¬ CH is valid [2004].

495“[Selon cette interprétation], la non-catégoricité de ZF n’implique qu’une ambiguïté référen-
tielle tandis que l’indécidabilité de l’[hypothèse du continu] implique une ambiguïté significative.
A mon avis, Beth [[1959, 515]] avance un argument concluant contre cette interprétation : il est
clair qu’une preuve de catégoricité implique toujours un isomorphisme entre modèles par rapport
au modèle du cadre ensembliste utilisé ; or, si la théorie des ensembles n’est pas catégorique — et
elle ne l’est pas effectivement si elle possède un modèle —, la notion même de modèle standard
est relative au modèle sous jacent la théorie des ensembles, d’où une ambiguïté significative”.
496“Canonical” means: the construction of the model should be unique, and “acceptable” means:

the model should be stable with respect to the answers on undecidable problems under typical
extensions.
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To sum up: since Cohen’s work, the signification of a large cardinal hy-
pothesis, from the point of view of the research discipline of set theory, is not
an extension of ZFC by supplementary axioms, but the choice of a model of set
theory. Hence, a discipline may have to wait for a central result in order to under-
stand fully the meaning of its conceptual framework. Set theory as a discipline by
virtue of Cohen’s result entered a stable state which will either be confirmed by
a realization of Woodin’s program or—for example when new surprising results
occur—will switch to a new state which cannot be predicted.

We see that the decision which universe to adopt is taken along different cri-
teria by categorists and set theorists, respectively. Grothendieck’s idea to adopt an
axiom of universes (which implies to adopt a particular large cardinal hypothesis
as an axiom) is not satisfactory from the point of view of set theory. But while
in the Bourbaki discussion the strength of such an axiom possibly played a role,
due to the undecidability of relative consistency in conflict with the hypothetical-
deductive doctrine (see 6.4.6.1), nowadays497 set theorists certainly do not fight
against such an axiom because it is too strong; it is a “rather mild assumption”
[Blass 1984, 7] since measurable cardinals are by far larger, let alone Woodin car-
dinals. Rather, the choice of one’s universe (one’s model of set theory) according
to set theorists should be made according to the criteria of canonicity and accept-
ability, and not in the interest of carrying out certain particular mathematical
constructions. In fact, Kreisel suggests that these constructions actually can be
carried out without choosing a model (see 6.6)—and in the situation of competing
models, it is certainly important to show for as many constructions as possible
that they are independent of such a choice.

6.5 Ehresmann’s fix: allowing for “some” self-containing

Ehresmann’s proposals for solutions of the foundational problems have been too
little discussed, much like his genuine mathematical contributions to CT.

The first publication where Ehresmann uses category theory seems to be the
paper [1957]498. At the beginning of the paper, Ehresmann describes concisely the

497In the past, there have been critical remarks by set theorists on different grounds. In [1939,
128f], Tarski calls the axiom given in [1938] “strange and artificial”, apparently mostly on the
ground of the fact that this axiom violates the theory of types. Sonner calls his version of the
axiom “not quite original, somewhat narrow for the logician” [1962, 175]; similarly, [Engeler and
Röhrl 1969, 60] say “a stronger axiom [than Tarski’s] such as the reflection principle would be
much more satisfying from the axiomatic standpoint”. Compare section 6.6 for more details on
reflection principles.
498The topic of this paper, “local structures”, was actually treated already in older publications;

see [1957, 49]. However, the categorial point of view had not yet been adopted there; [Dedecker
1958, 103] writes “local structures have been introduced 1951 by Charles Ehresmann, [ . . . ] and
their study constituted the natural foundation of differential geometry. [ . . . ] They can be
integrated naturally in the framework of categories and functors following [[Ehresmann 1957]]
(Les structures locales ont été introduites en 1951 par M. Ch. Ehresmann [ . . . ] et leur étude
constitue le fondement naturel de la géométrie différentielle. [ . . . ] Elles s’insèrent naturellement
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set-theoretical foundation he wants to use:

We distinguish sets and classes. The class of all sets is no set. We allow the
same operations for classes as for sets. Hence, we do not avoid the forming of
certain classes of subclasses of a class. If by these conceptions contradictions
should occur, it would always be possible to introduce restrictions to stay
in the framework of set theory; however, this would make the theory more
complicated499 .

There is no indication how the claim that such restrictions are always possible can
be justified. Paul Dedecker takes up Ehresmann’s work in [1958]; in an appendix
entitled Remarque sur les fondements, he discusses in detail an alternative class
theory. Dedecker first displays the situation in NBG; he then says

The logic in conformity with the principles [of NBG] does impose some
inconvenient features on the study of categories and functors; these features
apparently have not yet attracted the attention of logicians, and it seems
reasonable to try to eliminate them500 [p.130].

The remark that the inconvenient features had not yet attracted the attention of
logicians was justified by then; we saw that around 1958 there was not yet any
activity of set theorists in the search for foundations of CT. Dedecker continues
with a presentation of the features he thinks of:

In the context of [NBG], the [Hom(A,B)] can only be taken as objects of a
new category if they are sets; this restriction is often taken as a supplementary
condition [in the definition of the concept of category] although it is actually
foreign to the subject matter501.

To justify the “often”, he refers to [Gugenheim and Moore 1957], [Kan 1958a] and
[Grothendieck 1957]502. His account of the Hom-set condition as “actually foreign
to the subject matter” anticipates the main point of disagreement in the later dis-
cussion between category theorists and logicians concerning the question whether
the security measures are artificial (see 6.6), and Mitchell’s use of “big abelian

dans le cadre des catégories et foncteurs conformément à [[Ehresmann 1957]]” .
499“Wir unterscheiden zwischen Mengen und Klassen. [ . . . ] die Klasse aller Mengen ist keine

Menge. Wir lassen für Klassen dieselben Operationen zu wie für Mengen. Wir vermeiden also
nicht die Bildung von gewissen Klassen von Teilklassen einer Klasse. Sollten sich durch diese
Begriffsbildungen Widersprüche ergeben, so wäre es immer möglich, Beschränkungen einzufüh-
ren, um im Rahmen der Mengenlehre zu bleiben; dadurch würde die Theorie aber umständlicher
werden”.
500“La logique conforme [aux] principes [de NBG] n’est pas sans imposer certains inconvé-

nients dans l’étude des catégories et foncteurs, inconvénients qui ne semblent pas avoir retenu
l’attention des logiciens et qu’il semble raisonnable de chercher à éliminer”.
501“Dans le contexte de [NBG], les [Hom(A, B)] ne peuvent être pris comme objet d’une nou-

velle catégorie que si ce sont des ensembles, restriction qui est souvent prise comme condition
supplémentaire, quoique étrangère en fait au sujet”.
502Hence, Dedecker is perfectly aware of the state of the art in the various fields where CT

is applied around 1958; in a different context, he cites also [Mac Lane 1950] and picks up Mac
Lane’s “bicategories”. This tones down the claim sometimes maintained that the distance between
Ehresmann’s community and the mainstream has always been very large.
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groups” (see 6.4.3) shows that even in homological algebra where Hom(A, B) is
systematically endowed with a group structure one does not need to make the
postulate.

Dedecker’s proposal for a modification of NBG consists, in contrast to NBG
itself, in allowing predicates to be applied not only to sets, but equally well to
classes, with the restriction that not every predicate has a class (available in the
formal system) as its extension; predicates or properties which in fact have such
an extension class are called collectivisantes503. The axiomatic theory takes now
the form that for each predicate Q one has to decide by an axiom whether it is
collectivisante or not. Here, obviously no complete axiomatization can be obtained;
what one gets is rather a dynamical axiom system to be extended from case to
case (depending on which Q comes to the fore in practical work). Dedecker is
rather short as to the obvious problem with this procedure:

This means that from this moment on, reasoning is carried out in a
stronger theory; it is to be understood that one risks having to abandon
the new axiom one day if it leads to a contradiction504.

A second openness into the future is introduced here: not only the possible con-
tradictions might not yet have been discovered (as in the case of a fixed, stable
axiomatic theory like ZFC), but moreover the axiom system possibly never comes
to an end (not even in terms of axiom schemes) making thus any kind of model-
theoretical analysis just impossible. While a strong binding to the mathematical
practice is in principle to be welcomed, this is nevertheless a great setback.

Next, Dedecker enumerates some predicates Q(x) which ought to be collec-
tivisantes. For instance, this should be the case for the property “x is a subclass of
A” (i.e., one has a class of subclasses of a given class) and for the property “x is a
class” (i.e.,one has a class of all classes—a “universe”—U); further, it ought to be
possible to form the class of equivalence classes of an equivalence relation defined
on a class of sets (not of classes in general). Dedecker discusses the properties
of U in more detail; in particular, he points out that the propositions U ∈ U and
U = PU do not yield any of the known contradictions: Russell’s antinomy can be
ruled out by letting the property R given by R(x) ∼= x �∈ x be non-collectivisante
and simultaneously S given by S(x) ∼= x ∈ x be collectivisante. A conflict with
Cantor’s theorem can be excluded as well, as Dedecker explains: Cantor’s theo-
rem actually is proved by reductio ad absurdum of the assumption that there is
an injection f : P(A) → A; one determines the inverse image f−1(a) ⊂ A of
a ∈ Im(f) and considers the subclass X of A of all a with a �∈ f−1(a). Normally,
the contradiction would be obtained now by the observation that for x = f(X),
we would have x ∈ X ⇔ x �∈ X . However, Dedecker points out that in his setting
503This terminology was already used in Bourbaki’s Théorie des Ensembles [Bourbaki 1954]

chap.II, §1 n°2. The fact that it is used on p.205 of Bourbaki’s appendix on universes to exposé
I of SGA 4 is hence but consequent and does not indicate any dependence of this account on
Dedecker’s work.
504“Cela revient à raisonn à partir de ce moment dans une théorie plus forte (étant entendu que

l’on risque de devoir un jour abandonner [le nouveau] axiome s’il conduit à une contradiction)” .
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one has to decide first whether X exists at all, i.e., whether the corresponding
property is collectivisante. His decision is that this is the case for sets (hence,
Cantor’s theorem is valid for sets in his system) but not for proper classes (hence,
the proof of the theorem does not hold in this case).

The only reactions on this proposal are, to my knowledge, [da Costa and
de Caroli 1967] and [de Caroli 1969]; both papers seem to study set-theoretical
consequences of the proposed axiom system. But I know of no later contribution
to the discussion of foundations for CT taking it seriously into account. ([Sonner
1962] just cites it as a useful exposition of the problems encountered in dealing
with categories.)

Other forms to allow for self-containing have been discussed. Due to their
particular treatment of self-containing, Quine’s so-called new foundations (NF)
seem to be interesting at first glance505. But this is apparently a wrong impression
because Solomon Feferman pointed out repeatedly that the solutions possible in
NF do not work for examples of mathematical interest. For example, he describes
in [1977, 156] that he made an attempt in [1974] with Quine’s stratification but
failed to obtain cartesian products. More recently (and therefore not discussed
in the present historiographical setting), Feferman presented a modification of NF
[2006] and another attempt based on Russell’s conception of typical ambiguity
[2004].

A similar development is related to the anti-foundation axiom (AFA) taking
into account sets which are not well-founded (called sometimes “hypersets”); a
popularization of this theory (with pointers to relevant literature) can be found in
[Barwise and Moss 1991]. To my knowledge, hypersets have not yet been tested as
a foundation of CT, but there are on the contrary some applications of categorial
set theory in the theory of not well-founded sets [Joyal and Moerdijk 1995].

6.6 Kreisel’s fix: how strong a set theory is really needed?
There can be no simple proof-theoretical analysis of naive CT because naive CT
cannot immediately be rephrased in set-theoretical terms. Grothendieck surrounds
naive CT with a kind of shield (the universes) protecting it against known illegiti-
mate collections. By this procedure, CT loses a part of its naivety (manageability).
Grothendieck naturally tries not to enable a proof-theoretical analysis of CT but to
the contrary wants to eliminate any possible “threat” from this direction. Kreisel
underlines that one should rather analyze proof-theoretically whether the liberty
(presumedly) attained by positing the existence of universes is really necessary
(this amounts to an even less naive CT). Kreisel says in the context of problems
of self-application:

[ . . . ] so far mathematical practice does not force one to consider notions
more abstract than those of the cumulative type structure. This, by itself,

505In particular, [Quine 1937, 92] speaks about “the universal class V, to which absolutely
everything belongs, including V itself”.
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does not support the conclusion that therefore such notions are irrelevant to
mathematics. It is common experience [ . . . ] that the first uses of potentially
powerful principles make the exposition clearer, but can be eliminated; for
example, for a long time arithmetic remained constructive, although the prin-
ciple of induction permits nonconstructive uses; and even to this day analysis
is exaggeratedly predicative, that is, uses surprisingly elementary instances
of the least upper bound. There may indeed be a reason why self-application
should be excluded (at least) from (realist) mathematics; but if so, this reason
is not understood [Kreisel 1965, 118].

In this citation, Kreisel’s overall position can be felt: he advocates not to try to
attain unlimited control of intended constructions by strong existence principles,
but to analyze rather to what degree the actual employment of these constructions
really makes use of these principles. In his view, this kind of analysis is the task
of the logician whose competence is needed to accomplish it. Actually, Kreisel
propagates the separation of mathematical practice from its logical analysis [1970,
26f] but argues against achieving this by adopting the “formalist doctrine”: “the
principal function [of the formalist doctrine] is the separation of mathematical
practice from its logical analysis [ . . . ] this same purpose can be achieved without
a false philosophical doctrine” (ibid.).

Hence, there is, as expected, a clear difference between the approaches of
Grothendieck and Kreisel: Grothendieck tries to find substitutes for the problem-
atic constructions of CT through a strong set theory. Kreisel tries to keep the
strengthening of set theory as little as possible in asking to what (extensional)
degree the problematic constructions really play a role for practice. This is not in
conflict with Grothendieck’s position in n°307, according to which the possibility
of set-theoretical operations on the constructions is indispensable and a restric-
tion to “ideal” constructions à la Lacombe cannot be tolerated; rather, Kreisel
wants just to analyze whether one can modify the constructions in such a way
that one obtains the weakest assumptions on set theory appropriate to guarantee
this possibility of set-theoretical operating.

However, it is to be conjectured that the manageability of the theory fur-
ther decreases with the modifications to be applied within the scope of Kreisel’s
enterprise (hence, that the theory becomes even more tedious than it was already
due to Grothendieck’s proposal—see 6.4.6.2). Kreisel’s proposal thus clearly cuts
off practical needs in favor of the explanation of foundations, hence implies the
separation of the two tasks (in agreement with Kreisel’s position as described
above). Kreisel probably would not accept Bénabou’s remark that a measure for
the inadequacy of a foundation is given by its distance from the practice (7.4.2);
he isn’t apparently embarassed, either, that the effect hoped for in the application
of “potentially powerful principles” (“[they] make the exposition clearer”) would be
eliminated together with these principles themselves. For him, this counts only
as the communication function (in the spirit of Frege) and is irrelevant in the last
analysis.



278 Chapter 6. Categories as sets: problems and solutions

Kreisel apparently does not think that self-application is problematic in prin-
ciple (“if so, [the] reason is not understood”); on the other hand, he compares in
[1969a, 239f] the self-application problem of CT with the self-application prob-
lem of well ordering and blames category theorists for not having taken note of
the relevant literature concerning the latter problem (but unfortunately his bibli-
ographical hints in my opinion are not very helpful to those who wish to iron out
this deficiency)506. He does not accept the argument “[we] ‘want’ or ‘need’ to use
illegitimate totalities” [1969a, 239].

A result of Kreisel’s efforts is the approach (developed together with Fefer-
man and supported by G.H.Müller) to exploit reflection principles for CT. Such a
reflection principle is used by [Feferman 1969] and [Engeler and Röhrl 1969]; the
idea goes back to Kreisel, see [Kreisel 1965, 118] and [Feferman 1969, 203 n.3],
where an unpublished work by Kreisel concerning this question is referred to. The
key idea of the reflection principles (which gave them their name) is expressed in
the following passage of Kreisel’s review of [Mac Lane 1971a] (MR 44#25):

[ . . . ] “reflection principle”: applied to the collection G of all groups, it
says that what can be expressed about G in the language of current practice
is already “reflected” in a suitably chosen “small” set G[S] of groups.

(For a more precise explanation one can—besides the already cited works—consult
[Jensen 1967]; see also 〈#41 p.300〉.) This approach, from a methodological point
of view, is clearly not naive set theory (in the sense of Halmos’; see n.494), but
belongs to the research discipline of set theory in its technical sense.

What is the relation between such reflection principles and the axiom of
universes? Both things are by no means to be confounded; see [Blass 1984, 7].
Rather, the axiom of universes can be considered as a (quite coarse) special case
of a reflection principle; as [Kreisel 1965] puts it in his section 1.9:

[The] leading exponents [of category theory] use the axiom of universes,
that is, the reflection principle stated for the (infinite) conjunction of all
axioms of [ZF]. Now, even without knowledge of the details, it is morally
certain that the additional axiom is not needed. In any particular proof
(involving categories) only a finite number AF of axioms of set theory are
used. One has almost certainly overlooked the fact that for each such case
the reflection principle is provable in set theory (by use of axioms other than
AF ) provided regularity is assumed. So the ideas of the reduction [of the
theory of categories to set theory] can be applied to the set in which these
axioms hold instead of applying them to the universe of all sets.

Hence, it is not astonishing that [Kreisel 1969a, 239] criticises the axiom of uni-
verses, and it is clearer now, too, in what sense the assumptions made in using
the axiom of universes are stronger than necessary. At the same time, weaker

506Kreisel says that he thinks of the articles by Zermelo and Gödel cited in his [Kreisel 1969b].
He actually cites there [Zermelo 1908,1930] and [Gödel 1947,[1965]], but I do not find that the
problem is really elucidated one of these works.
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reflection principles have the advantage that one has metamathematical results
like conservative extension properties507 [Feferman 1969, 210].

A related enterprise is [Osius 1976, 205f]; Osius proposes an extension of
NBG—using the concept of an inner model (a concept which is related to re-
flection principles)—in which, contrary to ZF plus universes, a global concept of
categorial completeness (and not only one relativized to universes) is available.
This important problem apparently was not yet discussed by Kreisel.

It is unclear whether there have been category theorists employing Kreisel’s
methods in their work. Rather, the maxim has proved useful—for instance, in
elementary topos theory—to avoid the axiom of universes by checking thoroughly
whether one would not be satisfied already by the proof of an elementary propo-
sition. For example, [Johnstone 1977, xix] writes:

I [ . . . ] wish to consider certain “very large” 2-categories [ . . . ] whose
objects are themselves large categories. If I wished to be strictly formal about
this, I should need to introduce at least one Grothendieck universe; but since
all statements I wish to make about [these 2-categories] are (equivalent to)
elementary ones, there is no real need to do so.

6.7 The last word on set-theoretical foundations?

Although I did not discuss all proposals made up to the present day, it is certain
that some questions are not yet sufficiently taken into account by any one of these
proposals. One such question concerns the fact, pointed out by Bell, that the
foundational problems of CT are connected to the lack of a general theory of
arbitrary “properties”.

[ . . . ] the failure of set theory to justify the unlimited application of
category-theoretic operations is a consequence of its success in eschewing the
overcomprehensive collections which were originally deemed responsible for
the paradoxes. [ . . . ] In fact, set theory’s failure to embrace the notion of
arbitrary category (or structure) is really just another way of expressing its
failure to capture completely the notion of arbitrary property. This suggests
the possibility that a suitable framework for ‘full’ category theory could rea-
sonably be sought within a theory of such arbitrary properties [1981a, 356].

In section 5.4.4.3, we observed that the totality of all categories itself is not a
category Cat but a different kind of structure, a 2-category. It might be that this
simple observation provides a way out of (some of) the set-theoretical difficulties
with Cat. In section 7.2.2, I will discuss Lawvere’s proposal of an axiomatization of
Cat, in particular his effort to distinguish between the “inside” of the objects of Cat

507At first glance, it seems that a conservative extension property is not an advantage since
naively one wants to have things not available in ZFC. But Kreisel’s idea is precisely that it is
not the only way out of this to pass to a stronger set theory; one can also (and should rather,
according to Kreisel) pass to “reflected” versions of the things one wants).
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and its manifestation in the structure of Cat. This difference indicates that there
may be a shortcoming in the usual claims about the set-theoretical illegitimacy
(or inconsistency) of Cat. For Cat contains “itself” not as the entire complicated
building of points, arrows and labels (its inside) but as a single point connected to
certain arrows (the functors between other categories and this category). Thus,
to speak about “self-containing” here seems quite simplifying. This is naturally no
proof for the claim that a category of all categories is consistent but a remedy to
the usual arguments in favor of its illegitimacy.

That this approach might be fruitful is indicated by the remark by Lawvere
quoted in section 5.3.2.1: “the notions of infinite limits and colimits, or of an
object being “finitely generated” are not always elementary from the point of view
of a given category, although they do become elementary if the category is viewed
as an object in the category of categories” 〈#19 p.220〉. I.e., by translating a
given category into an object of Cat, some propositions concerning the objects of
the given category become elementary (as propositions concerning the object of
Cat508).

Incidentally, the fact that the criterion of identification for categories is equiv-
alence shows up the irrelevance of set-theoretical realizations of categories: Given
any set G, one can construct a category G with Ob(G) = G, Mor(G) = G × G
(i.e., there is precisely one arrow for each pair of elements of G). And this cat-
egory is equivalent to the category with precisely one object and precisely one
arrow [Grothendieck 1957, 125], [Segal 1968, 107]! This seems509 to relativize the
concept of cardinality to a larger degree than Skolem’s results did. Manin criti-
cises the “naive view that categories ‘are’ special structured sets”: “In fact, if it is
natural to identify categories related by an equivalence (not necessarily bijective on
objects) [ . . . ], then this view becomes utterly misleading”. This is but one more
consequence of the restriction of the means of expression stressed in section 5.3.2.

508Lawvere’s proposal of an axiomatization of Cat was employed by R.H. Street and others
in attempts to overcome size distinctions in set-theoretical foundations of CT, compare [Kelly
1979, 538] for references.
509The argument is perhaps not very convincing since it uses a quite specific construction having

little in common with “interesting” categories, after all. (It is somewhat pathological.)



Chapter 7

Categorial foundations

The mathematical problems of what is called foundations are no more the foundation of
mathematics for us than the painted rock is the support of the painted tower510.

[Wittgenstein 1956] V-13.

Mathematics in the 20th century was marked by an extensive discussion of
its foundations. The subdisciplines set theory, model theory and proof theory
emerged at least partly as scientific methods for foundational research511. The
task of giving mathematics a foundation was taken up by the mathematicians
themselves as well as by philosophers.

Category theory, too, was discussed as relevant for foundational research.
The present chapter recalls some elements of this discussion; however, no exhaus-
tive presentation is attempted512 since the discussion is still continuing and com-
prises numerous contributions of variable quality (some of which are only available
on the internet)513. I have chosen to present the discussion rather concisely since
on the one hand, the historical events to be presented do not belong to the period
mainly analyzed in the foregoing chapters, and on the other hand, in my opinion
the question whether CT can serve as a foundation of mathematics is rather ill-

510“Die mathematischen Probleme der sogenannten Grundlagen liegen für uns der Mathematik
sowenig zugrunde, wie der gemalte Fels die gemalte Burg trägt”.
511In the meantime, they have become relevant as research disciplines in their own right, beyond

such particular purposes; see also 1.2.3.2. [Sacks 1975] polemizes against the employment of
mathematical logic in foundational research.
512One particularly interesting recent publication not taken into account here should at least

be mentioned: [Marquis 1995].
513It is interesting that many scientists working in philosophy of mathematics, mathematical

logic, theory of science, philosophy of language, theoretical computer science and related fields
seem to be aware of the idea of considering CT as a foundation of mathematics without ever
having read any serious discussion of this subject. Even in the preface to the French transla-
tion of Quine’s Word and object, Paul Gochet mentions the subject. McLarty points out some
oversimplifications colported by this folklore; see 7.4.1. I mentioned already that CT made it
recently into a newspaper [Dath 2003]; this account implicitly discusses also the (pragmatist)
foundational potential of CT.
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posed. I defend the historical thesis that CT by no means asserted itself as an
alternative foundation of mathematics but to the contrary that it was a point of
crystallisation of the obsoleteness of the classical concept of foundation after the
pattern of set theory.

7.1 The concept of foundation of mathematics

7.1.1 Foundations: mathematical and philosophical

Just as the task (or perspective) of the philosopher can be distinguished from that
of the mathematician, the term “foundation” (of mathematics) can have a mathe-
matical and a philosophical meaning. A mathematical foundation of mathematics
or of one of its parts is a foundation in the sense of Hilbert’s Grundlagen der
Geometrie, i.e., consists of the specification of axioms. One would speak about
philosophical or epistemological foundations, however, only when one has “arrived
at the ground”, when the analysis cannot be pressed further—while in mathe-
matical foundations one rather agrees not to press ahead with it further without
checking whether this agreement is logically necessary or not; in most cases, it is
an agreement until revoked.

The idea of this distinction goes back to Aristotle and is taken up by scholas-
ticism in the distinction between causa materialis (ground in the sense of bottom)
and causa formalis (ground in the sense of cause). By “bottom” is meant here:
one works one’s way through to the conditions for the possibility of a cognition of
the objects (on these conditions “rests” everything).

Mathematical foundation means analysis of methods and concepts: the meth-
ods and concepts of the discipline are collected, fixed, organized, eventually inves-
tigated and developed further in an appropriate framework. In particular, they are
explicated. Philosophical foundation means understanding: the propositions made
by the discipline are justified—but not in the sense in which this is already done
inside the discipline itself: what is checked here is the soundness of the internal
procedures of justification, for example by an analysis of the axioms.

This distinction makes it easier to understand the criticism Kreisel adresses
to a certain usage of the term “foundation” by mathematicians:

The reader will have heard such expressions as ‘foundations of ring theory’,
not in the sense of a logical analysis in terms of some foundational scheme,
but simply as an organization or presentation of the subject. The expression
[ . . . ] corresponds to a positivistic conviction which became current after
the failure of Hilbert’s programme. Forgetting that the latter was intended
to establish a really quite implausible conjecture (namely the possibility of a
formalist reduction of mathematical reasoning) people thought there was no
hope of any foundational analysis! [ . . . ] On this same view the discovery
of axioms is supposed to be made by describing what mathematicians ‘do’
and not by analyzing concepts. [ . . . ] The view is most unempirical if one
remembers how axioms were actually found! [Kreisel 1969a, 244].
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Ultimately, what Kreisel says is that mathematical and philosophical founda-
tions are not to be confounded; to equate them consciously would be positivistic.
To the contrary, Kreisel wants a foundation deserving the name “philosophical”
to give an explanation (an answer to natural questions; see 1.1.2)514, and I agree
with him in this respect. His rigorous separation between conceptual analysis
and description of what mathematicians ‘do’, however, is not convincing from a
pragmatist point of view515.

7.1.2 Foundation or river bed?

In section 1.1.2, I argued that it is rather the specific approach to foundational
questions than the foundational questions themselves that makes mainstream
mathematicians indifferent towards foundational research as it is actually done. If
this is true, then philosophy should at least to a certain degree react in present-
ing and discussing alternative concepts516. One criticism apparently concerns the
fact that attempts to give a philosophical foundation are typically of a normative
nature and do not allow for adaptations to further developments in scientific prac-
tice517. Now, one could think that this problem is unavoidable since philosophy
looked just for the “ground” which is not supposed to change (that is the metaphor
employed in the term “foundation”, after all). But perhaps another metaphor is
more appropriate for the description of what should be looked for; this metaphor
was proposed, admittedly in a somewhat poetic manner, by Wittgenstein.

97. The mythology may change back into a state of flux, the river-bed of
thoughts may shift. But I distinguish between the movement of the waters
on the river-bed and the shift of the bed itself; though there is not a sharp
division of the one from the other.

[ . . . ]
99. And the bank of that river consists partly of hard rock, subject to no

alteration or only to an imperceptible one, partly of sand, which now in one
place now in another gets washed away, or deposited518 [Wittgenstein 1969].

514The “formalist-positivist doctrine” against which he fights in [1970] in my terminology would
mean to refuse any search for foundations other than mathematical.
515Also in a historical perspective, his reproach that the usage to speak about the foundations

of certain subdisciplines revealed necessarily a positivistic conviction is not quite tenable. [Heinz-
mann 2002] points out that historically before one spoke about “foundations of mathematics”,
one spoke about “foundations of, e.g., geometry” or other subdisciplines.
516One such proposal which influenced to some degree my own thinking about the question is

contained in the work of the German philosopher Christian Thiel; see his book [1995] and my
paper [Krömer 2005].
517Mac Lane once insisted that one should look for foundations which “fit the facts better”

[Mac Lane 1971a, 235].
518“97. Die Mythologie kann wieder in Fluß geraten, das Flußbett der Gedanken sich verschie-

ben. Aber ich unterscheide zwischen der Bewegung des Wassers im Flußbett und der Verschie-
bung dieses; obwohl es eine scharfe Trennung der beiden nicht gibt.

[ . . . ]
99. Ja, das Ufer jenes Flusses besteht zum Teil aus hartem Gestein, das keiner oder einer

unmerkbaren Änderung unterliegt, und teils aus Sand, der bald hier bald dort weg- und ange-
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(To put it in terms of classical philosophy, Wittgenstein gives priority here to Her-
aclitus above Parmenides.) There are mathematical concepts and theories whose
form is changed to make them capable of a use in other contexts. Must foun-
dations hinder such changes? [Kreisel 1969a] criticizes the view that foundations
must not “be an obstacle”. On the other hand, McLarty and Bénabou make an
appeal to the mobility of foundations.

It might become common sense that foundations come out of practice,
and will change as practice develops, and will lose contact with the subject if
they do not change with the practice [McLarty 1990, 370].

“Foundations” can only be “foundations of a given domain at a given
moment”, therefore the framework should be easily adaptable to extensions
or generalizations of the domain, and [ . . . ] it should suggest how to find
meaningful generalizations [Bénabou; see 〈#35 p.297〉].

This criterion is certainly not fulfilled by usual set-theoretical foundations (we
saw how awkward the attempts to adapt set theory to extensions of “the domain”
in the case of category theory happened to be). Bénabou is not automatically
favouring river bed-like foundations here since he seems to be mostly interested in
mathematical, not philosophical foundations.

7.2 Lawvere’s categorial foundations: a historical overview
F. William Lawvere made several attempts to apply category theory in foundations
of mathematics. Already his PhD thesis on the semantics of algebraic theories
can be seen as such an attempt since it yields a quite far-reaching model theory
for structural mathematics. However, I will start the discussion with his first
contribution which studies the relation of set theory and category theory from
a new point of view, starting with categorial notions instead of the notions of
set and membership. Next, Lawvere presented an axiom system for the category
of categories; the referee in Mathematical Reviews indicated some problems with
this system. Later on, similar ideas were pursued with the notion of (elementary)
topos, following ideas of Grothendieck, Lawvere and Tierney. There, Set is only
one (the most intuitive) example of a topos.

7.2.1 Lawvere’s elementary characterization of Set

Lawvere in [1964] achieves a (nearly) elementary characterization of the category
of sets (up to equivalence of categories). This characterization is sometimes called
the elementary theory of the category of sets (ETCS) in the literature. What
he does is to adjoin eight first-order axioms to the usual first-order theory of an
abstract category. I will not display these axioms in detail here; note that in order

schwemmt wird”.
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to formulate them, he defines the notion of an element of an object much as it was
presented in section 4.1.1.4, and he includes a categorial version of AC (see also
[Mac Lane 1950, 502]).

Lawvere then asserts the theorem that any complete category satisfying the
eight axioms is equivalent to Set. Here, completeness means that infinite products
and sums over any indexing set exist; hence, completeness is a nonelementary
property (this is why I said “nearly” above; see also 〈#22 p.241〉). A critic might
wonder what is gained then by this axiomatization, since NBG provides a finite
second-order axiomatization of set theory, too, and since moreover equivalence of
categories in some cases is quite a coarse relation, see 6.7. Apparently, Lawvere
felt himself that the achievements of [1964] are yet incomplete; this is suggested
by his concluding remarks:

It is easy to add to our theory axioms which guarantee the existence of
cardinals much larger than ℵω [ . . . ] However, it is the author’s feeling that
when one wishes to go substantially beyond whan can be done in the theory
presented here, a more satisfactory foundation will involve a theory of the
category of categories [p.1510].

And he provided such a (tentative) theory of the category of categories, as we will
see below. In particular, he stresses there that the notions of infinite limits and
colimits, hence the notions involved in the completeness properties of categories,
are not always elementary from the point of view of a given category, but become
elementary if the category is viewed as an object in the category of categories
〈#19 p.220〉. So if his axiomatization of Cat had succeeded, the problem with
ETCS would have been resolved.

[Osius 1974] gives a similar elementary characterization of the category of
classes and mappings.

7.2.2 Lawvere’s tentative axiomatization of the category of all
categories

In his paper [1966], Lawvere proposed to change completely the approach to the
problem of foundations of mathematics: instead of building mathematics on the
first-order axioms of ZFC or on the axioms of NBG, he introduced a formal language
(an alphabet equipped with rules for the forming of expressions and formulas and
rules of logical inference). In this language, he formulated a tentative axiomati-
zation of the category Cat of all categories (divided in an elementary part and
in a somewhat deeper theory, both providing for the existence of some categories
and constructions, in analogy to ZFC). This language naturally has symbols oc-
curing in typical formula of CT, for example Γ(x, y; u) for <u is the composition
x followed by y> etc.

Lawvere’s paper begins with a plaidoyer for overcoming ontological com-
mitments depending on the set paradigm. Positively, Lawvere’s own ontological
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position seems to be a structuralist one according to which the mathematics of his
time is concerned with “abstract structure”.

In the mathematical development of recent decades one sees clearly the
rise of the conviction that the relevant properties of mathematical objects are
those which can be stated in terms of their abstract structure rather than in#32
terms of the elements which the objects were thought to be made of. The ques-
tion thus naturally arises whether one can give a foundation for mathematics
which expresses wholehartedly this conviction concerning what mathematics
is about, and in particular in which classes and membership in classes do not
play any role. Here by “foundations” we mean a single system of first-order
axioms in which all usual mathematical objects can be defined and all their
usual properties can be proved. A foundation of the sort we have in mind
would seemingly be much more natural and readily-usable than the classical
one when developing such subjects as algebraic topology, functional analysis,
model theory of general algebraic systems, etc. Clearly any such foundation
would have to reckon with the Eilenberg–Mac Lane theory of categories and
functors. The author believes, in fact, that the most reasonable way to arrive
at a foundation meeting these requirements is simply to write down axioms
descriptive of properties which the intuitively-conceived category of all cate-#33
gories has until an intuitively-adequate list is attained; that is essentially how#34
the theory described below was arrived at. Various metatheorems should of
course then be proved to help justify the feeling of adequacy [1966, 1].

Lawvere tries to axiomatize the category of all categories. This implies that he
considers the particular categories (as given by mathematical practice) exclusively
as objects of this category characterized by the axioms. In particular, he uses for
his axioms only those properties of the particular categories which they have as
objects of Cat. Think, for instance, of the task to specify the ordinal 2 as an object
of Cat. It is rather simple, it is true, to consider 2 as a category; however, to
describe it as a specific object of Cat, one has to study the functors which ought
to be defined on or arriving at this category 2, as well as the relations between
these functors expressed them in terms of composition of functors. Lawvere makes
up a list of such relations characterizing the functors on or to 2; he then assumes
the axiom that on the category Cat, arrows and objects obeying these relations
do actually exist. To consider 2 as a category yields an “internal” characterization
of 2; such a characterization is not sufficient but helpful for the realization of
Lawvere’s project. For this reason, Lawvere says once (p.7) that the “inside” of
a certain category (which means, a certain object of Cat) can be displayed in a
certain manner519.

It is interesting that Lawvere tries to axiomatize the category of all categories,
and not merely the “universe” of all categories (which means the extension of
the concept of category). He tries apparently to exploit the observation that

519In section 6.7, I discuss a possible use of this idea to distinguish between the “inside” of the
objects of Cat and its manifestation in the structure of Cat in the treatment of the set-theoretical
difficulties with Cat.
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CT is “in principle self-applicable”; this is consequent from the point of view of
the foundational project to find a part of mathematics being able to found all
of mathematics (including itself), but difficult in view of the unsettled logical
problems related to such self-applications.

To sum up, what is proposed is a change of roles between set theory and
category theory which in some respect is similar to a change of roles between tool
and object; one could speak about the role of the framework and the framed520.
Isbell, in his review of Lawvere’s paper (MR 34 #7332), expressed it as follows:

The author’s purpose is to found a theory of categories, not in axiomatic
set theory, but in first-order predicate calculus. As the title suggests, the aim
is not only at autonomy but at empire; all mathematics should be formulable
within this theory. Technically, it would seem sufficient to annex set theory
itself. But this would mean no more than equal standing for the new system,
if category theory can also be adequately formulated in set theory. The claim
is advanced that a categorical foundation can be more natural because it gives
more prominence to the notion of isomorphism.

One soon encountered problems in Lawvere’s paper. Already in the review, Is-
bell521 points out some problems; in particular, he gives a counterexample522 to
a central theorem asserted523 by Lawvere. What is historically interesting about
this situation is the following: Isbell’s criticism shows that the mathematical prob-
lem of axiomatizing Cat is not completely resolved. Now, one should expect that
someone takes up the problem and tries to solve it—and that Lawvere writes down
his proofs and makes them accessible in view of fixing the errors and improving
the axioms. Instead, the focus of the discussion seems exclusively to be on the
philosophical aim of the project, namely to give an axiom system by which cate-
gory theory becomes a foundation of mathematics. Trivially (since the tentative
axiomatization did not succeed), this aim was not attained in the work; however,
it seems that one drew widely the conclusion (which is a nonsequitur) that the
aim cannot be attained for some principal reasons.

The mathematical problem was ignored until around 1973. A contribution
by Blanc and Preller to [Rose and Shepherdson 1975] is announced in the Jour-
nal of Symbolic Logic524. In this announcement, it is affirmed that because a
certain category is a model of the basic theory, the theorems on pages 11, 14,
15, 16 of Lawvere’s paper are wrong. The contributions of Blanc, Preller, and
Donnadieu stress the relevance of the concept of esquisses (sketches)525 to the
520Müller tried to replace the term “foundation” by the term “frame”; see [Müller 1975, 1981].
521Isbell was probably in the audience when Lawvere gave his talk because he is mentioned

in the list of participants of the meeting concerned, and because Lawvere in the proceedings
acknowledges a hint given by Isbell (see p.20 of his paper).
522using his concept of the skeleton of a category; see also n.433.
523Lawvere gives no proofs of his assertions.
524Journal of Symbolic Logic 39 (1974), n°2 p.413. I ignore the relation between this paper and

[Blanc and Preller 1975].
525[Blanc and Donnadieu 1976, 136]. The concept of sketch is somewhat complicated and

involves a graph, a set of diagrams and a set of cones (among other things). It was originally
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problem. Moreover, Blanc and Donnadieu take fibered categories into consider-
ation526. [McLarty 1990, 368] mentions further [Hatcher 1982] as a work trying
to fix the problems in Lawvere’s work; this is also tried by [Blanc and Preller
1975]. It is not clear whether this goal was achieved, the axiomatization becoming
quickly too complicated to be easily checked to grasp the intended model. It is
hence but consequent that these contributions apparently did not really influence
the foundational discussion.

There is a basic conceptual problem in Lawvere’s approach which from a
different perspective has been discussed earlier, namely that Cat is no category,
but a 2-category (see 5.4.4.3). I am not sure how this problem relates to the
particular problems pointed out by Isbell. Can the transition to a weaker criterion
of identification help to make Lawvere’s assertions theorems? Such mathematical
questions are outside the scope of the present book, but certainly of some interest.

From the point of view taken in the present work, Lawvere’s proposal, whether
successful or not, from the very beginning was not appropriate as a philosophical
foundation of mathematics since it is a reductionist proposal (identifying founda-
tion with axioms). Just as in the more traditional proposals, the objects of mathe-
matical discourse are (thought of as being) constituted by reduction to some basic
things (in this case, the objects of the category of all categories). It is true, the
motivation of (some of) the axioms comes, as in the case of ZFC, from mathemat-
ical practice, at least according to Lawvere 〈#33 p.286〉—i.e., there are informal
criteria at work. However, Jean Bénabou thinks (as he told me in personal commu-
nication) that the main problem of [Lawvere 1966] is precisely that it is, according
to him, not possible in this framework to develop what he called “naive CT”—
namely “all the domain covered in actual work about categories [ . . . ]”; compare
7.4.2. It seems that we encounter here a weakness of my philosophy since I have
now to choose which of the experts I trust—but by what criteria? This problem is
perhaps not serious since both of them could be urged to give technical arguments
for their respective point of view. Anyway, it is to be stressed that discussing
whether Lawvere’s proposal is reductionist or not is not meant as a historical ex-
planation of its failure. The reason for the choice of the philosophical position
taken in the present book is certainly not to make the historical questions vanish.

7.2.3 Lawvere on what is universal in mathematics

Lawvere’s attempt to axiomatize Cat is naturally but one possible way to use CT
as a “foundation” of mathematics. Later, Lawvere presented a different interpre-
tation of the term “foundation”.

developed by Ehresmann who aimed at defining categorially special structures; for instance, he
gave a specific answer to the question “what is a group” by considering a group multiplication as
a set of certain diagrams. See [Barr and Wells 1985, 142] and [Marquis 1997b, 125ff] for details
and references.
526[1976, 135]. In 7.4.2, I discuss the role of this concept in the work of Jean Bénabou. Actually,

Blank and Donnadieu seem to think that Bénabou introduced this concept; this indicates that
the Ehresmann school was not completely aware of the achievements of the Grothendieck school.
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Foundations will mean here the study of what is universal in mathematics.
Thus Foundations in this sense cannot be identified with any “starting point”
or “justification” for mathematics, though partial results in these directions
may be among its fruits. But among the other fruits of Foundations so defined
would presumably be guide-lines for passing from one branch of mathematics
to another and for gauging to some extent which directions of research are
likely to be relevant [Lawvere 1969, 281].

To foundations in this second sense, he relates the categorial concept of adjunc-
tion; the programmatic article [1969] has the task to show that “adjunctions are
everywhere”. For the role of stressing cognition guiding in the foundational debate,
see n.43.

By focussing on what is universal in mathematics, Lawvere’s reflections seem
to be related to what I called elsewhere “Thiel’s program” [Krömer 2006a]. On
pages 313–314 of his book [1995], Christian Thiel designed a program of collecting
the possible types of operations undertaken in actual mathematical practice (“Er-
fassung der möglichen Typen von Operationen, die in der Mathematik auf ihrem
gegenwärtigen Stand vorgenommen werden”). He summed up:

The result could very well be that the universality of mathematics rests
on the ever new applicability of very general operations (known in each case!)
and not on the fact that mathematics is about some very general (“ontologi-
cally first” or at least irreducible) objects. The fact that we are speaking in
mathematics in general about “sets of . . . ” and are referring with the dots
to different but always informally determined kinds of mathematical objects
indeed suggests already that we carry out always the same set-theoretical
operations in different areas of mathematics, but that there are no “sets” as
autonomous objects forming a category of their own or even have the ob-
jects whose type is mentioned in place of the dots of our expression “inside
them”. Hence, one should perhaps give up the idea of a fundamental disci-
pline of mathematics in the sense of a “regional ontology” and rather focus
on a “fundamental discipline” which, as a fundamental canon for the dealing
“with everything” in mathematics, fulfils exactly the task of a fundamental
discipline in the sense of the foregoing explanations527 [1995, 314].

527“Das Ergebnis könnte sehr wohl sein, daß die Universalität der Mathematik auf der im-
mer neuen Anwendbarkeit der (jeweils bekannten!) sehr allgemeinen Operationen beruht und
nicht darauf, daß die Mathematik von besonders allgemeinen (“ontologisch ersten” oder jeden-
falls irreduziblen) Gegenständen handelt. Daß wir in der Mathematik i.a. über “Mengen von
. . . ” reden, und uns mit den Pünktchen auf jeweils verschiedene, aber stets inhaltlich bestimmte
Sorten mathematischer Gegenstände beziehen, legt in der Tat bereits nahe, daß wir zwar immer
die gleichen mengentheoretischen Operationen in verschiedenen Gebieten der Mathematik aus-
führen, daß es aber nicht “Mengen” als autonome Gegenstände gibt, die eine eigene Kategorie
bilden oder etwa gar die Gegenstände “in sich” haben, deren Typus an der Stelle der Pünktchen
unseres Ausdrucks genannt wird. Es gilt daher zu bedenken, ob nicht die Idee einer Fundamen-
taldisziplin der Mathematik im Sinne einer “regionalen Ontologie” besser ad acta gelegt und statt
dessen eine “Fundamentaldisziplin” ins Auge gefaßt werden sollte, die als fundamentaler Kanon
für den Umgang “mit allem und jedem” in der Mathematik gerade die Aufgabe erfüllt, die einer
Fundamentaldisziplin im Sinne der bisherigen Darlegungen zugedacht war” .
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To put it differently: philosophical analysis of mathematics is intended to provide
answers to the question (coined by Lawvere) “what is universal in mathematics?”—
where in saying “mathematics” one should rather think of the activity of mathe-
maticians than of a corpus of results asking for foundational justification.

Unlike Lawvere, Thiel does not focus on situations, but on operations univer-
sal in mathematics; more precisely, he thinks that the universality (or ubiquity)
of mathematics rests on the indefatigable applicability of some general operations;
the analysis of this applicability is the real task of a “fundamental discipline”, and
there is no need to justify the operations by reducing the objects in question to “on-
tologically prior” objects—to the contrary, it’s the operations whose intuitiveness
justifies the discourse about these objects.

Thiel explicitly omits CT and topos theory from his investigation (ibid.
p.309); hence, one could conceive a continuation of this investigation including
CT. However, the omission is not surprising since ultimately Thiel sticks to a
constructivist position. The “canon” is restricted to some operations qualified as
intuitive and constructive; in particular, there is no choice operation in the sense
of AC. Hence, Thiel’s program seems not to be very useful since he does not ask
why such and such operations are intuitive for the expert.

7.3 Elementary toposes and “local foundations”

7.3.1 A surprising application of Grothendieck’s algebraic geometry:
“geometric logic”

It was in Grothendieck’s algebraic geometry that CT for the first time proved
to be a powerful instrument for the conceptual renewal of a broad discipline.
Interestingly, precisely the concepts and methods developed in this context allowed
one to make use of categorial concepts in mathematical logic, especially model
theory, and to set up a rich conceptual basis for this discipline nearly independent
of traditional forms of logic. In my view, this development was possible because
the concepts and methods concerned already in their original geometrical context
were fundamental—in a qualified sense of the term, since they were not merely
used to organize known mathematics but were essential in a real extension of the
“scope” of mathematical investigation.

The idea of adopting methods developed in a geometrical context in the con-
text of logical problems is highly original528 and goes apparently back to Lawvere.

528It has been said that Grothendieck’s renewal of algebraic geometry might be seen as a “new
Erlanger Programm” (4.1.2.3, 4.2.3). In the context of an adoption of Grothendieck’s concepts in
logic, it is to be noted that already before this enterprise, Klein’s Erlanger Programm was very
explicitly used in logic, namely by [Mautner 1946]. This author interprets the two-valued Boolean
mathematical logic of propositions and propositional functions as the theory of invariants of a
symmetric group in the sense of the Erlanger Programm (as presented by [Weyl 1939, 13-18]).
Just as geometrical properties are shown to be independent of the chosen coordinate system
by showing their invariance under the group of coordinate transformations, Mautner presents a
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The conceptual framework for categorial logic is the theory of elementary
toposes; this concept emerged from the concept of Grothendieck topos529. Taking
Giraud’s characterization as one’s point of departure (see 4.1.2.3), Grothendieck’s
concept of topos is modified such that it becomes independent of the set theory
used; see [Lawvere 1971]. In other words, the aim is

to characterize a class of categories, which behave “internally” in the way
in which we expect Grothendieck toposes to behave, but which are defined
by “elementary” axioms which are independent of set theory [Johnstone 1977,
23].

Obviously, this is a step of a new kind: Grothendieck thought of set theory as
something one fixes at the beginning but can forget about in the sequel; in the
present situation, however, the set theory chosen is something that can be varied.
This is intended since the investigations in which the concept of elementary topos
was first applied belong to model theory of set theory530; hence, it was crucial to
be able to make explicit the dependence on the respective set theory (since propo-
sitions on different set theories were aimed at); CT becomes a tool for questions
of set theory. It is at this very place that the foundational debate takes a different
shape. For Grothendieck, set theory is a foundation; he assumes “more” than ZF
(universes); Lawvere, however, assumes “less”. It was decisive for this project that
it is indeed possible to characterize the class of categories behaving “internally”
like Grothendieck toposes.

7.3.2 Toposes as foundation
[Bell 1981b] puts forward what he calls a “local” interpretation of mathematical
concepts.

The fundamental idea is to abandon the unique absolute universe of sets
central to the orthodox set-theoretic account of the foundations of mathe-
matics, replacing it by a plurality of local mathematical frameworks [namely]
elementary toposes [p.409].

group (namely the symmetric group of all permutations of individual variables) such that the
logical concepts or properties are independent of the truth values (the “logical coordinates”) of
their parts if and only if they are invariant under this group as a transformation group. Even
the tensor calculus of geometry is transferred to this context. Hence, Mautner uses geometrical
methods for logical problems; in principle, he shows that the calculi found in geometry are not
tied to this context but can be applied in other contexts as well. Mautner’s extension of the
Erlanger Programm is orthogonal to Grothendieck’s insofar as Grothendieck is still interested
in geometry. A comparison of Mautner’s contribution with the applications of Grothendieck’s
concepts in logic would be interesting but presupposes that the proposition that Grothendieck’s
renewal of algebraic geometry is a “new Erlanger Programm” be qualified. This seems to lead us
too far away from the main subject, the history of category theory.
529[Barr and Wells 1985, 87] speak about a “confluence of two streams of mathematical thought”:

Grothendieck toposes and Lawvere’s “continuing search [ . . . ] for a natural way of founding
mathematics [ . . . ] on the basic notions of morphism and composition of morphisms” .
530like, for example, an alternative proof of Cohen’s well-known result discussed in 6.4.6.3, see

[Tierney 1972].
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Actually, such a local foundation can definitely accomplish the task of a foundation
in the sense of Lawvere’s study of what is universal in mathematics:

In saying that the future of topos theory lies in the clarification of other
areas of mathematics through the application of topos-theoretic ideas, I do
not wish to imply that, like Grothendieck, I view topos theory as a machine
for the demolition of unsolved problems in algebraic geometry or anywhere
else. On the contrary, I think it is unlikely that elementary topos theory itself
will solve major outstanding problems of mathematics; but I do believe that
the spreading of the topos-theoretic outlook into many areas of mathematical
activity will inevitably lead to the deeper understanding of the real features
of a problem which is an essential prelude to its correct solution [Johnstone
1977, xvii].

The accent of this foundational program is on liberty of choice. If anyway one will
never know how the universe of discourse “really” looks, one rather needs means to
synthesize it. One can make particular constructions in a topos, in particular in
Set—in most cases, however, one is not forced to make them in Set. Gerd Heinz
Müller considers set theory’s capacity to provide for the existence of constructions
as an advantage not shared with topos theory; those used to the work with toposes,
however, apparently do not agree that this is indeed an advantage, for:

a) The claim that Set is the actual universe of discourse of mathematics reduces
the possibilities of choice offered by topos theory 〈#40 p.298〉.

b) “Internal” or “purely formal” (i.e., non-ontological) existence is enough for
mathematical practice.

Put differently: if one is not interested in ontology, a foundation yielding one
is rather embarassing. The philosophical discussion rather concerns the question
whether one has the choice to “be interested in ontology” or not.

Maybe those propagating topos-theoretic foundations only look for mathe-
matical foundations (which means, they do not care about ontology because they
do not care about epistemology). I am not convinced of that since these people
certainly are not of the classical “working mathematician” type (see n.399). Any-
way, the reader who has read this book up to the present page certainly cares
about epistemology and consequently might be interested in a closer analysis of
the relation between topos-theoretic foundations and the concept of set; such an
analysis is presented in the subsequent sections.

7.3.2.1 The relation between categorial set theory and ZF

[Mac Lane 1974, 427] says that “[the axioms for a topos] can be understood as
axioms for set theory formulated not in terms of membership, but in terms of
functions and their composition”. In this sense, also the axioms of a topos make
existence statements about the universe of discourse of mathematics, namely that
certain arrows exist and that certain diagrams commute.
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Already in the review of [Lawvere 1964] (MR 30 #3025), Heller said that
“insofar as [Lawvere’s ETCS] characterizes ‘set theory’, without reference to a
particular brand, the author is perhaps justified in his claim: ‘Thus we seem to have
partially demonstrated that even in foundations, not substance but invariant form
is the carrier of the relevant mathematical information’ ”. This lack of reference
to a particular brand is still present in topos theory, as turns out when comparing
the respective choice options provided for by set theory on the one hand and topos
theory on the other hand. In set theory, one faces the existence of nonstandard
models, i.e., nonisomorphic models of ZF531. The “true shape” of the universe
of sets characterized by the axiom system called ZF remains uncertain since this
characterization is not categorical. On the other hand, the point of departure of
the idea to consider topos theory as a generalization of set theory is the following:
the universe of sets characterized by ZF can also be described as a category (Set);
this category has—solely because of the axioms of ZF, without specifying one of
the nonisomorphic models—the properties of an elementary topos. The category
Set is therefore determined only up to these different models of ZF (which is by far
less than up to set-theoretical isomorphism since ZF has nonisomorphic models,
see above). But on the other hand, Set is but one example of a topos, and not
all other examples can be reasonably considered as alternative axiomatizations of
set theory.

But some of them can, and this is at the origin of the applicability of topos
theory in the Gödel–Cohen context (see n.530). The Gödel–Cohen result tells us
that it is undecidable which of the possible extensions of ZF by AC, CH or their
negations reveal the “truth” about the universe of sets; we can recover much the
same result by studying these various extensions as corresponding toposes. In this
context, toposes are themselves models of set theory, so to say (there are several
categories which are candidates for Set; for after all, when saying that Set is “the”
category of sets, we have still lots of decisions to take).

Deductively, the axioms of a topos are decidedly weaker than ZF (since they
have models which are not models of ETCS532; the concept of topos admits a real
finite first-order axiomatization; [Barr and Wells 1985, 89]). In this respect, it
looks quite strange that some people think that in order to define the concept of
topos one needed to assume ZF; this would make collapse the additional expressive
means of the concept of topos. But still, we have the feeling that some set theory
is needed for doing topos theory (since in the definition of the concept of topos,
classes of objects and morphisms are mentioned. Is it nevertheless possible to
construct toposes without relying again on set theory?

531I will not discuss here the interesting problem whether the relation of one model to another
expressed in saying that they are nonisomorphic already presupposes some (rudimentary) set
theory and hence is itself not independent of the choice of a model. See Heinzmann’s account of
Beth’s opinion reproduced in section 6.4.6.3.
532Historically, ETCS constitutes an intermediate weakening, this time with respect to ZFC; see

7.2.1.
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7.3.2.2 Does topos theory presuppose set theory?

Let me propose an answer to the above-mentioned question from the point for
view of my pragmatist philosophy of mathematics. In the situation of the theory
of elementary toposes, the developments presented in the preceding chapters cul-
minate in the following sense: the objects’ being sets is no longer being taken for
granted, but finally it comes to one’s mind to ask whether a given object is a set
or not; the objects are not automatically taken as sets. Rather, the constructions
involved are automatically objects of elementary toposes. Now, if one needs to
express in a particular situation that the constructions involved are actually sets,
one has a theoretical device at one’s disposal (namely defining a corresponding
functor into Set); this is an explicit, nonintuitive form of expressing this fact. To
put it differently: the theory’s scope extends to decisions on the theoretical level
of the question whether a particular construction possible inside the theory is in
particular a set (in the sense that in many cases one can decide whether there is a
corresponding functor with values in Set); if one wants to use the theory in a cor-
rect manner, one is no longer allowed to take these decisions on the nontheoretical
level. Hence, inside the theory (formal) rules of use for the expression <a given
thing is a set> are fixed whose validity in a particular situation is to be checked
on the theoretical (formal) level.

But let us repeat it: one could still say that in building topos theory, like
any other mathematical theory, one cannot help using a concept of class of some
kind (since a topos is a category, hence in particular a collection of things); so one
concludes that the independence from set theory might be a mere illusion. But in
my opinion, this conclusion falls short for two reasons:

1. in drawing it, one supposes that in topos theory just like elsewhere one op-
erates with extensions of concepts, and

2. because one believes that one knows already what extensions are (namely
something in the scope of axiomatic set theory), one thinks that in building
topos theory, one cannot avoid to use implicitly this theory of (the concept
of) extension.

I will discuss the second reason first. What does this “theory of extension” look
like? Well, Quine thinks that science in general cannot speak directly about
concepts, but only about their extensions—hence in particular, if one agrees that
the term “extension” is the name of a certain concept, only about the extension
of the concept of extension. At this point, one cannot help agreeing that the use
of the term “extension” ultimately can be but an intuitive use, since the attempt
to make it explicit obviously clashes. For this reason, the theory of extension is
necessarily axiomatic (see also [Fraenkel 1928, 268f]): the extension of the concept
of extension is just postulated in a “cautious” manner in an axiomatic framework.
The concept of set is (indirectly, because of the undefined ∈) an undefined concept,
but in the composition of the axioms it is subject to, one is partly guided by the
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intuitive understanding, by the intended use of the same concept. It is hence
unavoidable that one evokes the rules of use one thinks of.

The opinion of topos theorists seems to be that such an intuitive use during
the construction of topos theory is of no harm since the finished theory no longer
relies on this intuition which is replaced by the newly acquired means of expres-
sion for the concept “set”. This idea is related to my answer on the supposition
mentioned in the first reason above: it plays no role whether the things one op-
erates with are “actually” sets or not if one doesn’t operate on them as if they
were. Hence, topos theory could possibly claim justly to manage to do without
set theory if it provides substitutes for the set-theoretical operations used in naive
category theory.

It seems that Bénabou in [1985] (a paper to be discussed below) made a step
in this direction; the Zentralblatt review of this paper explains:

When Lawvere posed the question of how to characterize the category of
sets and functions in categorical terms, he opened the door to the possibility
of founding mathematics in other than set-theoretical terms. Sets are to be
objects in categories satisfying suitable properties. For such a program it is
of course necessary to have a notion of category, and of categorical properties,
that presupposes no set-theory [Zbl.957.18001].

And as we will see, this seems to be achieved by Bénabou’s contribution. Ob-
viously, one can ask whether such systems are consistent (much as one can ask
whether ZF is consistent). But as expected, this question cannot be answered,
since such systems contain in particular arithmetic.

Before passing to the discussion of Bénabou’s contribution, let me subsume
my opinion on the second problem mentioned above. The ontological program
contains its own failure. For if one believes that the proposition that all mathe-
matical objects “are” actually sets allows one to explain anything, one has at least
to know what sets are. However, as just argued, the use of the concept of set ulti-
mately remains confined to a language game, while the theory can only achieve a
characterization of its extension. Hence, one ultimately relies on the competence
which is at the disposal of the speaker who knows how to play this language game.
Now, there is also a pragmatist variant of set-theoretical reductionism where sets
are conceived as emerging by operation (cumulative hierarchy). But also this op-
erating can be grasped only partly by a theory (6.4.6.3); the infinitary part of the
hierarchy is not completely describable.

7.4 Categorial foundations and foundational problems of
CT

7.4.1 Correcting the historical folklore
[McLarty 1990, 366] refutes the view that categorial foundations have been in-
vented to avoid the size restrictions imposed by set-theoretical foundations “Cat-
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egory theorists’s real motives for categorical foundations were categorical natural-
ness and simplicity”. This is in agreement with Isbell’s assessment in his review
of Lawvere’s paper (see 7.2.2); as we will see in the next section, Bénabou in his
categorial proposal for a foundation for category theory stresses that size is not the
only problem. While the reader of [Goldblatt 1977] could easily get the impression
that the concept of topos had been developed as an abstraction from Set, and we
have seen in 4.1.2.3 and 7.3.1 that this has not been the case. Moreover:

The belief that categorical foundations arose by axiomatizing, generaliz-
ing or abstracting from the category of sets puts too much stress on toposes,
seen as the most set-like of categories. The category of categories is not a
topos so, despite its foundational importance and its role in the history of
categorical foundations, it is omitted from Goldblatt’s book. Nor are toposes
the only categorically axiomatized categories useful in mainstream mathemat-
ics. By far the most useful today are abelian categories. These are largely a
generalization from categories of modules and have nothing particular to do
with sets, so they have been omitted from the entire philosophical discussion
of categorical foundations to date [McLarty 1990, 366f].

7.4.2 Bénabou’s categorial solution for foundational problems of CT

[Bénabou 1985] first of all is another attempt to develop the “proper presentation”
of CT in the sense of Isbell 〈#21 p.238〉; hence, as far as its aim is concerned, this
paper belongs rather to the material discussed in chapter 6 than to the present
chapter. However, the concepts and methods used by Bénabou chronologically
and systematically can only be understood with the contributions to the theory
of elementary toposes in mind. Actually, Bénabou’s contribution historically may
indeed have been conceived as a solution of the circularity problems pointed out
above, arising in the attempt to replace set theory by topos theory—and if it is
indeed a solution, topos theory might reasonably claim to provide an alternative
foundation of mathematics.

Moreover, Bénabou starts his enterprise with a thorough discussion of the
concept of foundation, and the results of this discussion in my view are not only
relevant to the problem of the “proper presentation” of CT, but also to the prob-
lem of foundation of mathematics in general. Not only does Bénabou make us
better understand for what reasons category theorists did not find satisfactory the
usual proposals of set-theoretical foundations for CT; we understand also for what
reasons CT was held able itself to provide a foundation for mathematics.

Bénabou’s approach differs from the usual one (which consists in ensuring the
existence of certain apparently problematic constructions by an appropriate set
theory). First of all, he makes up a list of conditions of adequacy for foundations
of CT:

(i) The basic notions must be simple enough to make transparent the
syntactic structures involved.
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(ii) The translation between the formal language and the usual language
must be, or very quickly become, obvious. This implies in particular that the
terminology and notations in the formal systems should be identical, or very
similar, to the current ones. [ . . . ]

(iii) “Foundations” can only be “foundations of a given domain at a given
moment”, therefore the framework should be easily adaptable to extensions
or generalizations of the domain, and [ . . . ] it should suggest how to find

#35meaningful generalizations [1985, 10].

Pace his mention of consistency as a request for a foundation, as quoted in n.488,
Bénabou goes so far as to subordinate this request to adequacy:

Although it seems to have been the main preoccupation of the logicians
who tried to give foundations for category theory, I am only mildly interested
in mere consistency, for the following reasons:

(i) Categoricians have, in their everyday work, a clear view of what could
lead to contradiction, and know how to build ad hoc safeguards.

#36(ii) If a formal system fails to satisfy too many of the adequacy require-
ments, it will be totally useless; and worse, the inadequacy will probably
reflect too superficial an analysis of the real activity of categoricians.

(iii) If adequacy is achieved, in a satisfactory manner, consistency should
be a by-product.

This forcing back of consistency as a criterion for a foundation takes the con-
sequences of the proof-theoretical difficulties in relation to decidability of consis-
tency533. Adequacy is advertised as an alternative that allegedly is in a position to
avoid these difficulties: if a system of concepts and propositions fullfils the criteria
of adequacy, it “is kindly asked” to be consistent. This conviction rests apparently
on a heuristic argument similar to Bourbaki’s534.

Bénabou applies his adequacy conditions to criticise the usual foundations
as inadequate; this criticism motivates his alternative approach. Here is the list
of usual foundations he made up:

(2.1) There is of course a very simple first-order theory of categories, the
models of which are “small categories”. But it excludes or trivialises such
fundamental notions as categories with infinite limits of various sorts, and

#37
533See also 1.2.2.1.
534See 6.4.6.1. Who is worried that a responsible scientist should not build on such unverifiable

convictions can be answered with Wittgenstein that on the other hand the one who believes in a
justification of the constitution of objects by a proof of consistency has perhaps in turn erroneous
ideas about the kind of conviction one can draw from proofs. More precisely, Wittgenstein says
even that both approaches lead in principle to the same kind of convictions, since “The principle
which [ . . . ] guides [the proof] is not the source of our belief in a proposition formerly considered
as doubtful, but, as Wittgenstein says, ‘shows us what we believe’ (Le principe qui [ . . . ] guide
[la démonstration], n’entraîne pas notre croyance à une certaine proposition tenue jusqu’alors
pour douteuse, mais, comme Wittgenstein dit, ‘nous montre ce que nous croyons’)” [Heinzmann
1997, 45] (see [Wittgenstein 1987, 375]). I.e.: whatever we get from the axioms we ourselves
have put there. The relevant philosophical question is rather: do the axioms really capture the
intended model? Why just these axioms or assumptions and no others?
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thus is inadequate.
(2.2) There is also a Bernays type distinction between sets and classes,

but it does not allow arbitrary functor categories, which we would very much
like to have.

More elaborate versions have been proposed by logicians, but they have
become so utterly complicated, and so far from the actual way we think#38
about, and manipulate, categories and their relationship to sets, as to be
totally inadequate.

(2.3) The framework of universes, adopted say in SGA, is perfectly con-
sistent, assuming a strengthening of ZF, but [the fact that as soon as U is
big enough, the properties of the Yoneda embedding of a category C into the
category of functors from the dual Cop into the category of sets in U (e.g.,
it is full and faithful) do not depend on U, and are “purely formal”] show[s]#39
that [the framework of universes] is not quite satisfactory, and again does not
reflect the way we work with categories.

(2.4) The frameworks described in (2.2) and (2.3), apart from their in-
adequacy, have a very unpleasant common feature: they are based on “set
theories” at least as strong as ZF, thus excluding the possibility of taking as
“sets” the objects of an elementary topos, the importance of which need not#40
be emphasized [p.13].

Bénabou starts from the basic idea to define CT without making use of set theory
(which historically is possible only after Lawvere, see 7.3). To do this, he points
out which implicit assumptions in the usual work with categories (usual around
1980!) depend on the presence of an underlying set theory. On p.11, he introduces
the following terminology: “We will call naive category theory [ . . . ] all the domain
covered in actual work about categories [ . . . ]”. Consequently, one reads on p.23:
“Naive category theory is not elementary. We talk about properties of categories
(local smallness, infinite products, well-poweredness, etc.. . . ) using the language
of sets and the whole strength of ZF”. Whether this is actually true or not (i.e.,
whether a proof-theoretical analysis will confirm it or not) is doubtful according to
Kreisel (or rather was doubtful around 1965); what Bénabou rather aims at here is
that his proposal should be measured using his own adequacy condition according
to which a foundation should not be too remote from the “actual way we think
about, and manipulate, categories and their relationship to sets” 〈#38 p.298〉.

Bénabou’s analysis of the foundational problems starts naturally with a close
inspection of these problems. On p.16, he notes:

From the example of big categories it is very easy to draw a false conclu-
sion, and it has indeed been implicitly drawn, namely, that the only reason
why a category could fail to be a set is that it is too big.

To show that this conclusion is false, he discusses the example of the conclusion
“If C is locally small [535], we can construct for each pair X, Y of objects of C the

535not in the sense of [Mac Lane 1961], but in the sense that the Hom-collections are sets; see
6.4.1. Hence Bénabou does not automatically presuppose that each collection Hom(A, B) is a
set in his definition of category.
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set Mono(X, Y ) of all monomorphisms from X to Y ”. This argument obviously
is quite important in [Grothendieck 1957], see for example 〈#16 p.137〉. Bén-
abou observes that in set theory, by the comprehension scheme, precisely those
subclasses of Hom(X, Y ) form a set which are determined by a formula φ of set
theory while in an arbitrary locally small category C it is by no means necessary
that “f is a monomorphism of C” can be expressed by a formula of set theory536.
Bénabou notes that one may dislike this argument since it seems to make use of a
pathological construction: “[such paradoxes are] ‘strange’ [ . . . ] they arise out of
“logical hair splitting”, perhaps relevant in axiomatic set theory, but certainly of no
importance in category theory”. To defend his analysis against possible criticisms
from the point of view of the category theorist rather than from the one of the set
theorist is in agreement with his adequacy condition for a foundation of category
theory discussed above. Anyway, he is quite short when refuting this criticism:

[ . . . ] topos theory shows that there is no frontier between logical con-
siderations about sets and category theory. Moreover, since we are speaking
of foundations we have to be able “to split all those hairs that might pose
problems” [1985, 17].

From the problem with the comprehension scheme, he develops the approach to
pass to a different concept of formal definability. For if categories need not be sets
(ibid. p.16), the comprehension scheme is at stake (and with it, as Bénabou points
out further, the notion of equality, the concept of set-theoretical representability,
the concept of a family of objects). Andreas Blass, the referee in Mathematical
reviews, explains:

The central role played by formal definability in (the comprehension scheme
of) the usual set-theoretic foundations is played in the author’s foundation
for category theory by a category-theoretic concept of definability based upon
representability of functors. (Both sorts of definability serve to ensure the ex-
istence of needed sets or objects of the base category.) [MR 87h:18001].

Hence, Bénabou’s proposal consists in building CT not using set abstraction , but
another type of base operations (on a technical537 level).

536Think of the difference between set-theoretical isomorphism and categorial isomorphism,
discussed in section 5.3.2.2. Bénabou’s idea resembles Dedecker’s, see 6.5. It would be interesting
to know why Bénabou did not cite Dedecker’s work among the usual foundations. For Bénabou
was a student of Ehresmann: Bénabou’s thesis, entitled Structures algébriques dans les catégories
and supervised by Ehresmann, was published in volume X of Ehresmann’s journal Cahiers de
Topologie et Géométrie différentielle [1968]. Recall also that we noticed already in section 2.4.3
that Mac Lane in [1950] did not fall into Bénabou’s trap; similarly, [Mac Lane 1961, 27] makes
the “conclusion” an additional axiom for abelian categories.
537The proposal is indeed too technical to be explained in detail here; Bénabou relies on

Grothendieck’s work on fibered categories (SGA 1). Recall that Bénabou’s adequacy criterion
was not that a foundation can be made up without technical means but that it is not remote
from the way category theorists actually work with categories.
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7.5 General objections, in particular the argument of
“psychological priority”

The original idea to make CT the basic theory on which to build all mathematical
theories seems to have lost some of its vigour. [Corry 1996] describes it as an open
problem: “the possibility to develop the whole of mathematics based on the concept
of the category of all categories, or on any other similar categorical idea, remains a
question still open to debate and in need of further elucidation” (p.374); “category
theory cannot yet claim to have provided a single, axiomatically defined system
which may provide a unified conceptual foundation for the whole of mathematics”
(p.388). [Bénabou 1985] first of all looks for foundations for category theory;
however, he sees topos theory as foundations of most mathematics (p.28; my
emphasis).

There is a weak and a strong version of dethroning set theory by CT. The
weak version consists in a simple ad hoc refusal of set theory’s universality claim,
relying on the fact that there is at least one mathematical theory (namely CT)
of which there is no meaningful account in set theory. The strong version is to
replace set theory completely, even in the numerous places where it can be used
quite meaningfully. epistemologically, the “weak” version is actually stronger than
the “strong” one since it leads to the complete renunciation of the idea of a global,
unique foundation in the classical sense.

Let us look at some principal objections against categorial foundations.

[ . . . ] all of mathematics can be logically based on extensionalization
and reflection (or “objectivization”). This seems to me an essential step for#41
epistemology. But, one has also to avoid any overestimation: nothing is
said concerning applicability of mathematics outside mathematics, no hint is
given, how to choose special contents of mathematics, e.g., in algebraic and#42
analytic number theory, in complex function theory, in exhibiting interesting
differential equations, etc, etc. For an approach to philosophy of mathematics
from this point of view, especially with respect to the deep question of the
interconnections between various parts of mathematics (e.g., between algebra
and topology), category theory is certainly relevant; see [[Mac Lane 1986a]].
However, what is actually incomprehensible for me, is any reason for a po-
larization between set theory and category theory; they merely have different
tasks. All of these theories, including category theory, are contained in set
theory (using logic) in so far as expressibility and deduction are concerned
[Müller 1997, 140].

Hence, Müller acknowledges that set theory does not resolve the criterion problem;
he points out that it is not even meant to do that. It should be subject to some
discussion whether a foundation (and not only what Müller would perhaps call a
“logical base”) can be confined to an investigation of expressibility and deduction.
Can the philosophical task of a foundation be accomplished thus538?

538It is interesting that Müller paraphrases “reflection” with “objectivization”: some construc-
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In the context of the claim that CT could be seen as a foundation of math-
ematics, [Feferman 1977, 150 n.3] refers to [Kreisel 1969a]; it is true, Kreisel ad-
vances no explicit criticism of Lawvere’s original program539, but Kreisel’s dis-
tinction between “set-theoretical” and “formalist” foundations (p.241ff) could be
relevant here. In view of Kreisel’s position with respect to formalism540, it is to be
supposed that he made this distinction to differentiate set-theoretical foundations
from formalist ones, which in his eyes are inadequate; if one further supposes that
for Kreisel the possibility of a set-theoretical foundation flows from the informal
side, the content of set theory, one can extrapolate this and insinuate that Kreisel
would have criticised Lawvere’s approach as a formalist one. For Lawvere puts,
one could say, basic axioms for a formal system which are not justified by some
content (unlike axioms of set theory, according to Kreisel). However, such a crit-
icism would fail to meet with Lawvere’s intention. For he does not at all, as one
can easily show, adopt a formalist position, but a structuralist one541—where he
advances the hypothesis that not sets but categories provide the right means for
a description of the content of the concept of “structure”.

This said, the decisive criticism concerns the philosophical question whether
categories intuitively are as accessible as sets. [Kreisel 1969a] insists on a qualita-
tive difference between “number” and “category”: he wants to show that a technical
notion is not sufficiently accessible to serve as a beginning. (Hence, the possibility
to justify mathematics by common sense on a technical level would certainly not
be admitted by Kreisel.) Similarly, [Bell 1981a] notes that the definition of ∈ in
terms of arrow language hardly encompasses our intuitive idea of elementhood—
which of course does not hinder Bell from propagating categorial foundations (at
least as mathematical foundations) to some extent (see 7.3). The most exten-
sive elaboration of the argument that CT cannot be a (philosophical) foundation
because categories are intuitively not as accessible as sets has been given by Fe-
ferman [1977]542. He thinks that the concepts of operation and collection have
“psychological priority” with respect to the concept of category, since this concept
relies on a special kind of operations on collections. It is worth noting that in
Feferman’s account, categories are throughout structural categories.

Basically, Feferman takes up Wittgenstein’s argument against Russell’s logi-
cism (see 61) when explaining what is meant by psychological priority:

[ . . . ] one cannot understand abstract mathematics unless one has un-
derstood the use of the logical particles ‘and’, ‘implies’, ‘for all’, etc. and
understood the conception of the positive integers. Moreover, in these cases
formal systems do not serve to explain what is not already understood since

tions become objects (well-defined entities in Quine’s sense) only by virtue of the reflection
principle.
539He does so either in his review of [Mac Lane 1971a] (MR 44#25).
540See 1.3.1.4 and 6.6.
541Additional literature concerning this distinction is discussed in section 5.3.1.1.
542Feferman’s criticism is published in the proceedings of a conference primarily concerned with

questions of mathematical logic and computability theory. This is not an ideal situation since
category theorists are not automatically supposed to have noticed the paper.
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these concepts are implicitly involved in understanding the workings of the
systems themselves [Feferman 1977, 153].

Incidentally, this leads him to refuse the possibility to justify mathematics by
common sense on a technical level. According to Feferman, Mac Lane in personal
communication had told him that in his (Mac Lane’s) view “mathematicians are
well known to have very different intuitions, and these may be strongly affected by
training” (ibid. p.152); here is Feferman’s reply:

I believe our experience demonstrates [the] psychological priority [of the
general concepts of operation and collection with respect to structural notions
such as ‘group’, ‘category’ etc.]. I realize that workers in category theory
are so at home in their subject that they find it more natural to think in
categorical rather than set-theoretical terms, but I would liken this to not
needing to hear, once one has learned to compose music.

However, the quintessence of categorial foundations is not so much to put the
concept of category in the place of the concepts of collection and operation but
to stress the primacy of operating over the objects on which one operates. CT is
seen as a mathematical theory of operating. Moreover, the concept of category
is informal on the technical level: its informal content is not, as Feferman seems
to think, collections of structured sets, since also the nonstructural categories are
perfectly reasonable (and not only correct) uses of the concept.



Chapter 8

Pragmatism and category theory

In the introduction, I said that the way mathematicians work with categories re-
veals interesting insights into their implicit philosophy (how they interpret mathe-
matical objects, methods, and the fact that these methods work). On the grounds
of the evidence presented, we can now observe that the history of CT shows a
switch in this interpretation: at first, objects of categories were always interpreted
as sets (as in the case of the representations of Eilenberg and Mac Lane; see section
5.4.4.2); the purely formal character of categorial concepts was acknowledged but
not consequently stressed. What was stressed positively is that concerning the
categories themselves, the “all” is to be taken seriously 〈#20 p.237〉. One was not
aware of the fact that the difference between set theory and formal CT allowed
for an interpretation of CT beyond sets (as far as the objects are concerned).
This changed with Grothendieck on the one hand and Buchsbaum on the other.
Grothendieck was interested in infinitistic argumentation and tried to extend the
scope of the (formal) concept of set. Buchsbaum was interested in formal purity.
The result of this development is a new technical intuition. This paradigm change
took a different shape in the American and the French community, respectively.

The implicit philosophy is given to us as a matter of fact, but the philo-
sophical position developed in chapter 1 allows for a sound systematic account of
it. However, it is not claimed that this position provides the only explanation of
the historical events; other influences which are possibly equally well among the
origins of the events are not excluded by this line of interpretation.

8.1 Category theorists and category theory

8.1.1 The implicit philosophy: realism?
Lawvere’s formulation “Our intuition tells us that whenever two categories exist in
our world, then so does the corresponding category of all natural transformations
between the functors from the first category to the second” (see 1.3.2.1) is not
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automatically realist simply because intuition is said to tell us something about
existence. Whether it is realist or not depends on what precisely is meant by
“our world”. This is important since the intuition Lawvere speaks of concerns a
technical matter which might very well be thought of as a product of our minds;
hence, the implicit philosophy could equally well be constructivist!

Our distinction between reasonable and pathological uses of formal concepts
does not help us here since it concerns deliberate restrictions of applications possi-
ble in principle while Lawvere’s intuition of the “existence in our world” concerns
“applicability in principle” of concepts whose formal definition does not allow for
the applications which “should” be allowed according to informal intentions (at
least if the terms class etc. intervening in an undefined manner in the definitions
of these concepts are interpreted according to usual set theory). There are two
different kinds of “applicability in principle” at issue; the first one is a too large
applicability where the applicability of the formal explication of the concept ex-
ceeds the original intention, while the second one is a too restricted applicability
where the formal explication is not able to encompass all intended applications
of the informal concept. The shared feature of both situations is the discrepancy
between formal explication and intended content, but at first glance, it is not clear
how the first situation can be used to settle the second. It is easy to take a realist
position in the second situation: it is felt that something “is there” despite our
nonability to speak about it. But there are other reactions possible in this situa-
tion: if we are not able to speak about something on a certain level of language,
this might indicate that we’re on the “wrong” level. Once a new level is adopted,
feeling comes again into play, this time telling us that we have reached the “right”
level.

What does Buchsbaum’s statement “the duality principle could not be effi-
ciently used, as long as we were restricted to categories concretely defined, in which
the objects were sets and the maps were maps of those sets” (3.1.2.2) tell us? It
tells us the following: Not only can certain things be seen as categories beyond
those “concretely defined”, but they have to be seen thus in order to progress
further (in the case of the duality principle). In this case, actually, there is no
choice to see them differently (i.e., as categories concretely defined), contrarily to
some of the examples discussed in section 5.3.1.5. The problem is not what can
be interpreted as a set or class (maybe artificially as in the Kuratowski definition
of an ordered pair etc.). Rather, things are thought to belong to some framework
where they usually “live”. Not every category is composed of sets and functions—
independently of whether it can be seen so on whatever detour; it wouldn’t be seen
rightly! What is at issue is no potential property in the sense of proof theory, but
the conviction to arrive at a correct description. But this does not automatically
imply an ontological statement. As above, one could describe the epistemologi-
cal situation with levels of language. We do not have other (or better) means of
description at our disposal than the one we actually use.

We encountered innumerable statements of the form “this and this is seen
rightly when seen categorially”; category theory is seen as an answer to the criterion
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problem, as a “condensation point” of the conceptual development. Grothendieck
takes a conceptual framework as the “right” one when the asserted propositions
have simply to be verified, which means when the concepts have just to be un-
folded to get the propositions, for short when the concepts are exemplified by the
propositions. Were this position taken seriously, science would be rendered super-
fluous. But intended models can be problematic, after all. Grothendieck’s projects
have not all been realized, let alone realized without frictions, and there are quite
some concepts which, instead of cracking the original problem in the investigation
of which they were introduced, became themselves a source of difficult problems
once they became themselves objects of investigation.

Let us discuss one more piece of implicit philosophy. When André Weil calls
the term “functor” a metamathematical one (see 2.3.4), he indicates that he did
not accept (or, as Kuhn would say, convert to) the new paradigm. For as I pointed
out in [Krömer 2006b], the term “metamathematics” in this case denotes the in-
vestigation of objectified mathematics (i.e., mathematics made the object of an
investigation) by mathematical methods (here, the definition of what constitutes
a mathematical method stays still in need of clarification). Now, such an inves-
tigation can be seen as forming itself a part of mathematics, which means, not
merely using mathematical methods, but moreover studies mathematical objects
(objects considered usually—according to the usual paradigm—as objects to be
submitted to the research called mathematics). If one does not accept this view,
then one is not ready to accept theories of lower level as new objects of new theo-
ries, legitimate by itself. That means that Kuhn’s approach is not only the right
one as far as decisions on relevance are concerned, but also as far as the decision
on what actually is mathematics (and what is not) is concerned.

Weil’s refusal may have an ontological background since Bourbaki assigns a
certain ontology to mathematical objects (an ontology which comprises functors
only with difficulty). But the Bourbaki ontology is subject to some criticism: what
is claimed on the one hand is that structures are the real objects; on the other
hand, this assertion asks for a definition of “structure”, which Bourbaki in truth
gives ultimately in relying on sets again. From the pragmatist point of view, such
an ontological debate is empty since ontology is “wrapped up” in epistemology: and
if one has no access to structures but via sets (as Bourbaki seems to believe), then
the stressing of an ontological difference between structures and sets is useless, for
lack of means of cognition enabling us to grasp the difference.

So here is the answer of pragmatism to the problem of how to define the
notions of mathematical method and mathematical object: there is very simply
a common sense (and possibly several of them), an agreement on which ways
of access, resp. means of cognition, to call mathematical, while all objects can
be labelled mathematical to which one actually has access by these means; the
distinction between mathematical and metamathematical disappears (as far as
their alleged ontological, resp. epistemological, effects are concerned).
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8.1.2 The common sense of category theorists

We have seen in connection with the analysis of “diagram chasing” (3.3.4.4) and
elsewhere that at some moment in history the category theorists took the gloves
off and faced to the idea that the term “object” is an undefined term in category
theory. They made of category theory something “purely formal”. Such a “formal-
ist” attitude is not new in history of mathematics; actually, the definition of the
term “formalism” that is perhaps most appropriate to our present purposes was
given by Marc Parmentier in his comment on Leibniz’ Nova Methodus pro maximis
et minimis: “a blind calculus, more attentive to the application of the rules than
to the nature of the objects it manipulates”543 [Leibniz 1989, 102 n.30]. Inciden-
tally, Parmentier in this property of Leibniz’ calculus saw one of the reasons of its
success—and this may be so in the case of category theory, too.

But let us come back on what seems to be a consequence of this attitude,
namely the opinion of many category theorists that “in principle” such construc-
tions as arbitrary categories of functors or Cat are perfectly legitimate despite
set-theoretical difficulties. Recall Lawvere’s above-cited account of intuition; a
similar reaction was Grothendieck’s when Lacombe noted that the proposition
“the composition of functors formally behaves like a bifunctor” (i.e., the forming
of arbitrary functor categories) is not expressible in terms of classes (see 6.4.4.2):
this indicates simply that the means of expression provided by the distinction of
sets and classes are not able to grasp the intended model, for: “It is certain that
one needs to be able to consider categories, functors, homomorphisms of func-
tors and so on . . . as mathematical objects on which one can quantify freely and
which one can consider as in turn forming the elements of some set” 〈#27 p.257〉.
These mathematicians are interested in the continuation of a construction proce-
dure where results of one construction can become points of departure of a new
one. They find “intuitive” this iterative process of building constructions on con-
structions.

The interesting thing about the discrepancy between the formal definitions of
categorial concepts and the set-theoretical means for the seizing of their extensions
is that the concepts giving rise to difficulties do not look “artificial”.

The restrictions employed [Grothendieck universes or NBG] seem mathe-
matically unnatural and irrelevant. Though bordering on the territory of the
paradoxes, it is felt that the notions and constructions [as the category of all
structures of a given kind or the category of all functors between two cate-
gories] have evolved naturally from ordinary mathematics and do not have
the contrived look of the paradoxes. Thus it might be hoped to find a way
which gives them a more direct account [Feferman 1977, 155].

Was is meant by the “contrived look of the paradoxes”? When a question in the
context of the testing of a formally defined concept is to be answered, one takes

543“un calcul aveugle, plus attentif à l’application des règles qu’à la nature des objects qu’il
manipule”.
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typically the most direct way and tries to construct a situation having two prop-
erties: the applicability criteria given in the formal definition are fulfilled, and
there can be only one answer to the question. Hence, in the construction of this
situation, one is guided solely by the criteria that the concept is indeed applicable
and that the question has indeed a clear-cut answer. Now, questions flowing from
such a metamathematical analysis of a concept are typically not of the same kind
as those flowing from an application of the concept as a tool in the solution of
mathematical problems. Hence, the construction procedure described leads often
to situations very different from those where the concept is commonly used as
such a tool. What is constructed thus might easily have a “pathological” look in
the eyes of the typical user of the concept (see 1.2.1.1).

But this is precisely not the case with the problematic constructions in CT544!
These notions “have evolved naturally from ordinary mathematics”. What does
that mean? First of all, I pointed out in section 6.1.2 that these notions differ
from the concepts leading to contradictions in set theory in an important respect.
Namely, the latter concepts are often intended to make propositions about ap-
plicability, i.e., ignore in a certain sense the separation of object language and
metalanguage. In my view, a mere disposition of a concept for reflexivity (like an
applicability to concepts, for instance) is not sufficient to lead to serious problems;
there has to be a more peculiar semantical relation to applicability, like a direct
appeal to reflexivity in the concept’s content545. Category theory, however, is not
intended to grasp applicability of concepts.

Moreover, it is important to note that the “formalist” attitude ascribed to
the category theorists here does not consist in just playing around with purely for-
mal things but is guided by methodological principles. The first methodological
principle of Eilenberg and Mac Lane was to regard things in terms of composition
of functions. This suggested to them to stipulate that a function comes equipped
with a fixed domain and codomain, and ultimately to axiomatize composition
of functions. They applied the principle of fixed domain and codomain also to
functors, the objects they introduced for the study of the behaviour of construc-
tions expressed in terms of composition, not because this yielded just another nice
instance fulfilling the axioms, but because their second methodological principle
(flowing from the first) was to describe usual constructions as functors (see 5.4.2).
Neither did later categorists just play around. The possibilities of the concep-
tions of Eilenberg and Mac Lane had been tested in the years since (in connection

544Hence, there is quite an “essential” difference between them and the set-theoretical anti-
nomies, in disagreement with what Eilenberg and Mac Lane said 〈#23 p.245〉 (who obviously
had not yet taken those constructions into account). However, the function of their dictum is
clear: to dispel doubts concerning the new theory by stressing that it is most probably rela-
tively consistent with set theory. One has to take into account here that by then set theory was
perfectly established, while the new theory encountered some scepticism (2.3.2.1).
545However, even such concepts are not automatically excluded by considerations like Tarski’s

results that object language and metalanguage have to be separated in principle, since these
results depend on certain arguments of countability which do not necessarily apply in all cases
under consideration here.
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with various particular purposes), and the results of these tests suggested to the
later categorists to take the paradigm to regard things in terms of (axiomatized)
composition of functions even more serious, to drop additional paradigms which
Eilenberg and Mac Lane had still taken for granted. When analyzing the use of
the term “purely formal” in the discussion, one has to keep in mind this: “formal”
does not at all mean “meaningless”. It means that one follows a paradigm which
has proved to be reliable, even up to consequences which cannot be any longer
coped with in older interpretations of what mathematics relies on. When stressing
that the possibilities of the formal definition had to be discovered in the course of
history, I do not think of a process of stripping away any informal intention, but
rather of replacing or complementing one by another. Still in the Grothendieck
era, certain constructions were considered as pathological.

To sum up: it is not that problematic constructions are considered as patho-
logical but those manipulations that would be appropriate to point out that the
constructions are problematic. Recall how Bénabou justified the irrelevance of the
restrictions: “as soon as U is big enough, the properties of the Yoneda embedding
of a category C into the category of functors from the dual Cop into the category
of sets in U (e.g. it is full and faithful) do not depend on U, and are ‘purely for-
mal’ ” (see 〈#39 p.298〉 and section 6.4.6.2). This means that by giving (or trying
to give) a set-theoretical realization of the constructions, one destroys their “purely
formal” nature. Bénabou further claims 〈#36 p.297〉 that those who are trained
in successful work with constructions use them only in a certain (hopefully un-
problematic) manner and cannot harmonize the proposed manipulations with this
(technical) intention. The idea of a “purely formal nature” can be compared to the
calculation with formal power series where convergence need not to be checked as
long as no concrete numerical values are to be substituted for the indeterminate.
CT does not intend on propositions about set-theoretical realizations. In section
6.3.1, we have seen that already Eilenberg and Mac Lane distinguished between
purely formal and “real” uses of concepts.

Much like Feferman facing the complications related to the method of uni-
verses (see 6.4.6.2), Isbell felt the need for a “more direct account”:

The well known fact that some basic constructions applied to large cate-
gories take us out of the universe seems to me to indicate that the construc-
tions are not yet properly presented. The discovery of proper presentations
is too difficult, though, for all work on these constructions to wait for it
〈#21 p.238〉.

The intended constructions are felt as being “basic”; hence, the fact that they
are incompatible with another base (set theory) is evidence for a kind of “base
change”, for the introduction of new basic objects. Isbell’s position is ultimately
a new hypothetical-deductive position: the constructions are in principle “clear”,
they are merely not yet “properly presented” (i.e., there is a problem of expression
on the formal level, not of understanding on the informal level)—but this cannot
stop the work with the constructions. The reliability of such work is not thought of
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as depending on such a proper presentation but is inferred from technical common
sense. Hence, the task of a foundation is merely to make this common sense ex-
pressible, i.e., to enable a formal check of the impression of category theorists that
“everything’s fine” with the constructions employed, provided they are employed
in a certain way. Similarly, the Eilenberg–Steenrod foundations of algebraic topol-
ogy had the task to make precise the “imprecise picture which the expert could use
in his thinking but not in his exposition” (see 2.4.1.2).

However, the danger here is that this common sense bypasses too carelessly
possible contributions of a metamathematical analysis of the situation. This is
pointed out by [Blass 1984, 6]. Discussing several answers to the question: “What
is the appropriate set-theoretic foundation for category theory?”, Blass stars with
“[ . . . ] Answer 1. None”. He adds immediately that this answer is not satisfactory
in all respects:

The point of this answer is that for its own internal development category
theory, like most branches of mathematics, does not need a set-theoretic foun-
dation. Once the basic concepts are clearly understood, their set-theoretic
encoding is irrelevant. [ . . . ] But this approach is not adequate for answering
questions like: Does category theory necessarily involve existential principles
that go beyond those of other mathematical disciplines? At first sight, the
answer to this question is yes, because of the need for large (and superlarge
and . . . ) categories; a more careful analysis amounts to an attempt to provide
a set-theoretical foundation for category theory.

Before recalling what has been done for such a more careful analysis, we should
note that Blass makes a statement on clarity and understanding: “once the basic
concepts are clearly understood, their set-theoretic encoding is irrelevant”. First
of all, he has in mind without doubt a collective (not individual) understanding:
in usual mathematical discourse, the clear understanding of concepts is part of
the task of the discipline of mathematics as a whole (“we do not yet understand
this completely” etc.). But in this case, Blass’ sentence challenges Quine’s idea
that only extensions can be the objects of science (1.3.1.4). More precisely: the
“basic concepts” serve first of all as tools; when, in agreement with the general
phenomenon of reflexivity of mathematics (Corry), an internal theory concerning
these tools is developed (in which the concepts become objects), one is obliged,
according to Quine, to restrict oneself to the investigation of extensions (and hence
of a set-theoretical encoding) of the concepts. Blass rather says (implicitly) that
in the case of categorial concepts, an understanding is not achieved through a
set-theoretical realization; the concept of understanding he thinks of is certainly
not the Quinean one of grasping the extension. I would like to add that the
clear understanding of the concepts rests in truth on the knowledge of the criteria
deciding whether a given application of a concept is reasonable or not; these
criteria guide the use of CT in applications and the selection of relevant questions
concerning the concepts of CT in theory building. In particular, certain concepts
are basic inside CT; in contrast to this, the set-theoretical encoding is not basic
(incidentally, it is already shown to be thought of as derived by the very choice
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of the term encoding). By the temporal accent (“Once”), Blass in my opinion
means merely that the formal explication (hence in particular the set-theoretical
encoding) is a preliminary means of communication, not something that leads to
the understanding of the concept.

As to the results of the more careful analysis desired by Blass, the metamath-
ematical question “does category theory necessarily involve existential principles
that go beyond those of other mathematical disciplines?” according to Kreisel is
to be negated; see section 6.6546. In the usual working situation, however, one
rarely takes note of this; one relies rather on the intuition of the expert in taking
the liberty of using these existential principles in pretending pro forma to respect
some security measures. An example:

The [ . . . ] naive definition of Set forbids some categorical constructions
we will consider later. The standard way of dealing with the situation is
to introduce the universe, i.e., a large set of sets which is closed under all
necessary operations, and to consider only the sets belonging to the universe.
Later in this book we will always assume, whenever necessary, that all required
hygiene regulations are obeyed [Gelfand and Manin 1996, 58].

What is needed is a philosophical interpretation beyond the observation that math-
ematicians trust in their capacity to be cautious. They think that they are able to
pick out only harmless uses of the class concept. Thus, a simple-minded answer
to the criterion problem would be: choose what does not lead to contradictions —
but that is precisely what no one knows. The interesting thing is to observe how
the choice is made without actually knowing much about consistency.

8.1.3 The intended model: a theory of theories

While the term “object” is used at a central place in category theory, the objects
are not its objects as a theory. Normally, one would perhaps expect that a thing
when switching from the tool perspective to the object perspective is “unfolded”,
i.e., that one begins to consider the internal structure of this thing while it was
regarded before rather as a black box just doing what it is expected to do. If
the things called objects were the objects of CT, the internal hierarchy of CT
would seem to be in conflict with this since the complex object of the lower level is
objectified (which means here: is made an object of some category) by shrinking to
a point on the higher level admitting only external (categorial) characterization.
The conflict is an apparent one since something can be treated as object without
being penetrated (the strategies of the investigation of the object just have to
manage to do without penetration). Anyway, not the objects are the objects of
CT; the objects of CT are those theories which manage to do without penetration.

How can a theory be the object of another theory? Let me repeat it: “theory”
is a vague term which covers every kind of theoretical work, such as operations,
546A similar assessment was made by Gödel in a letter to Bernays, see [Feferman 2004, 142

n.7].
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propositions and so on: whenever something is made the object of investigation
(considered, explained), we have a theory. There are several possibilities to make
a theory itself the object of another theory. Extensionally, a theory is a collection
of propositions. The point of view of proof theory is to study the formal versions
of the propositions, but this, unlike CT, concerns the deductive structure of the
proposition. What structure does CT concern? The point of view of CT is that
the validity of certain propositions is related to the commutativity of certain dia-
grams, and this property is appropriate to become an object on a new level. The
justification of the new objects refers to common sense on technical level which
materializes when the community enters a stage of “normal science”. The vague
talk about “structure” and “reflexivity of mathematics” (Corry) means that one
studies the manipulations or propositions of the lower level. The object is justified,
i.e., one is aware of its articulation in the world, one does not constitute this ar-
ticulation (the rules for it) from scratch. This awareness cannot be communicated
without such training.

The theory of a higher level does not need to (and even cannot) be justified
by going back to a base level, since it has other objects than abstractions from
things living on the base level. In a way, the concentration on its objects as
objects implies a stripping off of the original intended uses. Couldn’t one employ
the vague term abstraction here? I do not want to say: the objects are not
abstractions, but: their constitution is not justified by going back to the (alleged)
base level. This level (in our case: the sets) post festum is no more than one
example among others, something special. In this interpretation, the importance
of the nonstructural categories becomes clear547.

I did already insist on the fact that many categories have as objects the
sets endowed with a structure of a certain type and as morphisms the functions
between these sets respecting this structure. Now, such a structural category
(as I called them) can be seen as a certain way to encode the “theory” of the
structure in question (favouring, as we have seen, information on a structure type
obtainable by studying how the instances of the structure type interact, especially
insofar as such interactions can be expressed in terms of functions and of function
composition; this is what I called the external characterisation of the objects of a
category). The part of a structural theory which is encoded in the corresponding
category concerns the operations typically made when studying the instances of
the structure (passage to substructures or to extensions, to product structures or
similar constructions, to other structure types and so on). Category theory is a
theory of these (types of) operations.

It is no accident that the objects of a category have their name: by naming
them thus, one aims at interpreting them as the objects of some mathematical
theory (and at treating mathematically the relation between a theory and its
objects). In this sense, the concept of category can be obtained (and actually
547Leo Corry is right to underline the fact that category theory is more applicable in the

treatment of structures than the Bourbaki structure theory, but he misses stressing that this
ironically is so because of the nonstructural categories.
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has been obtained historically) by decontextualizing the “essential properties” of
such an encoding of a theory. A theory of this concept, which means an arsenal
of theoretic tools for the treatment of different categories, is a theory of theories
of a structure type. Once again: the objects of CT are not the objects, but the
categories (or, as Freyd said, the functors). The fact that the objects have their
name indicates that CT is a theory of theories, is about treatment and typical
constructions of theories.

Now, when developing such a theory, one observes that this arsenal applies
also in other cases falling under the formal definition of “category” without falling
under the informal definition of “encoding of a theory of a structure type” (these
cases are the nonstructural categories) and that these examples are quite important
in the study of structural categories. I think that for this reason we do not get
too far from a theory having as its objects the theories of a structure type by
admitting such models. Let me repeat it: the concept of category is informal on
a technical level: its informal content is not collections of structured sets since
also the nonstructural categories are perfectly reasonable (and not only correct)
uses of the concept. There is a proper (spatial) intuition at work on the technical
level, related to the commutation of diagrams, and this makes new common sense
possible.

A particularly fruitful method of category theory employed in this study is to
treat the different categories as instances of one and the same structure type. It is
no surprise, hence, that the different models of the concept “category” are regarded
as constituting together another model (even according to the informal definition:
the algebra of composition of functors is an encoding of the theory of this concept,
seen as a “structure”). Not only can tools contained in the arsenal be applied to
this model, but moreover it yields new tools. Correspondingly, this model is not
considered as pathological, no more than the others. It is true: this model cannot
be regarded as a structural category if the words set and class in the definition
of a structural category are taken seriously; but since there are also nonstructural
categories considered as legitimate models of the concept of category, this category
of categories could be seen as just another such nonstructural category (which
concerns a structure type but no structured sets)548.

Nonstructural categories are no longer given by the original intention but
usurp it; the underdeterminateness of the term structure is exploited by using the
term wherever the technical concept category applies: “this and that behaves like
a structure type (because it is an instance of the concept of category); hence, we
can submit it to the same type of operations”. On the other hand, nonstructural

548This relates to my idea that the (so-called) self-application in CT might be unproblematic
(see section 6.7) since categories, as soon as they become considered as objects, adopt a purely
formal character, lose their status as an intuitive collection (since CT does not claim to make
propositions about objects of a category as intuitive collections). One has to take care that this
transformation of a category into an object works without problems. Therefore, Bénabou tries
to replace set-theoretical operations used in the work with objects of categories by categorial
operations (since leaving behind ZFC, the set-theoretical operations do not stay put).
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categories do not have the exclusive responsibility for the abandonment of the
idea that structures invariably have underlying sets. This idea was challenged
by categories whose objects have no elements in the sense of CT (4.1.1.4), whose
isomorphisms are not set-theoretical bijections (5.3.2.2), whose products are not
products in the sense of set theory (4.1.1.2) etc.; as we have seen, such phenomena
occur both with structural and nonstructural categories. They are, so to say,
harmonized with our conception of structure through the usurpation of the latter
by formal category theory.

What are the consequences of this intended model for the foundations of
category theory? The concepts which categorists do not want to dismiss have
in common with the concepts intervening in the set-theoretical paradoxes that
they reflect the intended uses of the theory (in the respective communities). On
the other hand, these intended uses in both cases are different in an important
respect: applicability of concepts is not what CT wants to grasp. Hence, if people
analyzing logically the concepts used by categorists point out problems concerning
applicability of concepts, this does by no means indicate that the formal definitions
of category theory missed the intended model (like those of pre-axiomatic set
theory did). This model rather would be missed if one followed the advice to rule
out the concepts whose analysis raised problems.

In the case of the problems of naive set theory, the analysis took seriously
the formal definition. (In this case, this definition did correspond quite closely to
the intended model.) The new formal definition (or rather: axiomatization) of the
concept of class is not satisfactory since it is not categorical (admits nonisomorphic
models). CT historically belongs to an ulterior stage: what would be needed for a
satisfactory formal definition of the basic concepts of the theory (i.e., a definition
corresponding to the intended model) is a satisfactory formal definition of the
concept of class (this distinguishes CT from other mathematical theories most of
which can be defined in ZFC in satisfactory manner). Since there is so far no
such satisfactory formal definition of the concept of class, category theorists do
not take the formal definitions of the concepts of CT entirely seriously but act
as if the concept of class were not present in these definitions; they hope that
by the informal criteria and their experience they are spared illegitimate uses of
the objects. ZFC provides no satisfactory set-theoretical foundation for CT, or,
put differently, it is pointless in the case of CT to apply the criterion according
to which it is illegitimate to speak about those objects which cannot be shown to
exist in ZFC. Hence, there is no “parallel” but an intersection between the problems
of naive class theory and those of naive category theory: the formal definitions of
categorial concepts miss the intended model insofar as they use a concept of class
which is defined in an unsatisfactory manner (misses its intended model). To sum
up: in CT, the formal definition is taken seriously in the sense that one does not
stop at the level of structural categories; but it is only taken seriously up to the
concept of class (since one is not interested in realizations). An extreme version
of this standpoint would be to say that “class” is treated as an undefined term.

The uses of categories as tools were guided by methodological principles
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which established a technical common sense. When they are used as objects,
the concept of class is seen as “foreign to the subject matter” (see 6.5) since the
constitution of these objects in truth relies on this common sense.

8.2 Which epistemology for mathematics?

8.2.1 Reductionism does not work

Eilenberg and Mac Lane, in assembling CT as a means of description, relied on
the means of set theory (more precisely, they employed operations described by
set theory). They discuss the problem whether the totality of objects in a given
category is legitimate, but not the problem whether such totalities can themselves
be considered as objects of a category in a set-theoretically legitimate way. The
possibilities of unfolding of the formal definition are underestimated. Only the
objects have a purely formal character, not the categories which are still considered
as collections in some intuitive sense. One can ask whether Eilenberg and Mac
Lane did this for “objective” reasons or because they worked in a time when it
was the current “style” to do so—but this question seems to be ill-posed from a
methodological point of view (how shall one distinguish between evidence for the
one and evidence for the other answer? We could still live in such a time and take
for objective what is perhaps not). Anyway, the later developments indicate that
the claim is to be criticized according to which all mathematical (if not conceptual)
thinking relies invariably on operations of the form of the set operations isolated
in set theory. Rather, it seems to be the case that in the description of operations
of thought one can employ different means (adopt different viewpoints); what you
get at one time are set-style objects, while at another time you get arrow-style
operations.

Without doubt: at least as long as one has to deal with categories composed
of structured sets, the actions described by CT can be decomposed “meaningfully”
in set operations. But it is not clear how such a decomposition could be motivated.
The semantical meaningfulness does not guarantee the pragmatic motivatedness.
To unite the object constructions to sets appears as the attempt to separate them
from the acting subject. From the pragmatist point of view, this tendency in
epistemology (the elimination of the subject) is the wrong track. The “criterion
problem” as a problem has its origin here, at least partly: it is only after the arti-
ficial separation of object constructions from the acting subject that the decisions
taken (which appear now as decisions on an independently given object) adopt a
look of arbitrariness.

While representatives of traditional foundational research interpret the dif-
ficulties occuring in the application of reductionism to CT as a shortcoming of
(naive) CT (thus stressing the cognition-limiting function of foundations), work-
ers in the field seem rather to interpret them as a shortcoming of traditional
foundations—these foundations are not able to accomplish certain epistemologi-
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cal tasks. It became clear that for category theorists, mathematical cognition in
reality is not justified by traditional foundations (but is, so to say, already there
when these foundations are introduced to provide an a posteriori legitimization,
as in the case of an illegitimate child whose parents marry). It turns out, hence,
that the criticisms put forward by set theorists against the basic definitions of
CT themselves miss the intentions. The conclusion which has apparently been
drawn is that the philosophical task of a check of agreement between theory and
intended model cannot be accomplished by a reductionist epistemology here since
this epistemology lacks precisely the means to articulate itself the intended model:
in set theory, the intended model of CT cannot be grasped.

During the establishment of a foundation of mathematics oriented towards
set theory, the fact was lost that mathematical operations are not bound for all
times to the types of operations taken into account by such a foundation.

8.2.2 Pragmatism works

[McLarty 1990] points out how the members of a community, starting from a
conceptual framework which is intuitive (clear) for them (namely the framework
of set theory), rewrite a history in tracing back the origins of another conceptual
framework (topos theory) to its (belated) relations to the community’s favorite
framework. McLarty illustrates the procedure by turning the tables, i.e., sketching
a community for which the conceptual framework of CT is intuitive (clear) and
which reads the history of (Cantorian) set theory through these glasses (p.369f)549.
What is expressed in the perspective that two such communities can coexist is the
learnability of convictions of clarity, resp. the possibility of the coexistence of
different (technical) common senses.

Recall the Saussurean definition of structure cited in n.402: a structure is a
system of signs in which the most precise property of a sign is to be something that
the other signs are not. If one replaces “sign” by “object” in this definition (and such
a replacement, according to pragmatism, does no great harm to the sentence since
each object is semiotically mediated after all), one arrives at a proposition about
objects which is in agreement with the view expressed in CT about the objects—
even if this view is not described exhaustively by this proposition. However,
the intent of the pragmatist interpretation is not so much to arrive at another
definition of “structure” (certainly a less “sharp” definition from a mathematical
point of view); rather, the talk about structure seems ultimately to be but a
blurred expression of the true situation which, according to pragmatism, is best
described by asserting that theories, resp. theorems, about objects of lower levels
become objects on a higher level.

What about evidence lending support to our pragmatist interpretation? First
of all, we have seen that in the history of CT, intuitive use is situative. Intuitivity
is transformed throughout: some things are used first in an intuitive manner

549Incidentally, such a thing seems indeed to have been done by Manin, see n.436.
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and later in a non-intuitive manner; but also the converse process occurs: after an
appropriate conceptual transformation, some things are finally used in an intuitive
manner. We encountered numerous moves and reversions of intuitive use, switches
between the roles of tool and object: in the project of Eilenberg and Steenrod
(2.4.1.3), in the reinterpretation of coefficients of cohomology (5.1.3), in Grothen-
dieck’s viewpoint of schemes as the true basic objects (4.1.1.2), in the conception
of derived categories (4.2.2).

Next, we have the feeling that also in the case of category theory there is a
torsion in the hierarchy of determination of concepts. This is important since only
such a torsion is evidence against a reductionist thesis. What is this torsion?

The fact that “the consciousness in the determined cognition is more lively
than in the cognition which determines it” in the case of the blind spot on the retina
tells us that we are more familiar with the version processed by intellectual activity
than with the raw physiological perception, and this is not much of a surprise, after
all (since “we” are perceptive organs plus intellect, not just perceptive organs).
What I called a technical common sense may be seen as an analog of such a process,
however related to some scientific activity and undertaken by intellect only after
a corresponding training. In the history of thought, developments can occur by
which one usage of processing and training is replaced by another. The fact that
set theory has been replaced has been explained in all necessary detail in this
book; what is still to be answered is the following question: naive category theory
is the version processed by intellectual activity of what? Is there something more
formal, more difficult to grasp, as in the case of the ε-δ definition of velocity550?
the “proper presentation” Isbell dreamed of?

I do not know the answer, and according to the philosophical position de-
fended in this book, this proper presentation maybe is not so relevant epistemo-
logically since what counts is that our “consciousness” in the processed version is
“more lively”. But on the other hand, the finding of the blind spot served quite
some other important purposes: it was an important progress in both physiology
and cognitive science, and last but not least it helped Peirce to formulate his philo-
sophical position. Correspondingly, the “ε-δ version of naive category theory” may
be there, waiting for us to uncover it, and once uncovered may serve important
purposes yet to be discovered or invented. This book was written to destroy the
superstition that by uncovering this proper presentation we can finally achieve
complete security in our mathematical reasoning, but it was not at all written to
discourage work on the problem.

550Compare the quotation to be found at the beginning of section 1.3.2.2.
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Abbreviations

A.1 Bibliographical information and related things
In the bibliography, I use nearly exclusively the current standard abbreviations
for journal titles and the like. The following abbreviations may occur in the
bibliography or the main text of the book:

A.1.1 General abbreviations

f (with page numbers) and the following page
ff (with page numbers) and the following pages
n. note (especially footnote)
n.s. (with volume numbers) new series

A.1.2 Publishers, institutes and research organizations

AMS American Mathematical Society, Providence/Rhode Island
BI Bibliographisches Institut Darmstadt
CNRS Centre national de la recherche scientifique
DFH Deutsch-Französische Hochschule, Saarbrücken
DMV Deutsche Mathematikervereinigung
ENS École Normale Superieure
EPT École polytechnique
ICM International Congress of Mathematicians
IHES Institut des Hautes Études Scientifiques, Bures-sur-Yvette
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IHP Institut Henri Poincaré, Paris
LMS London Mathematical Society
LPHS Laboratoire de Philosophie et d’Histoire des Sciences (UMR

7117 CNRS), Nancy
MAA Mathematical Association of America, Washington/DC
puf presses universitaires de France
SMF Société Mathématique de France

A.1.3 Journals, series

JFM Jahrbuch über die Fortschritte der Mathematik, DMV, De
Gruyter/ Berlin

MR Mathematical Reviews, AMS
SC Séminaire Cartan. The papers are accessible online under

http://www.numdam.org/numdam-bin/feuilleter.
SGA Séminaire de Géométrie Algébrique, IHES. The volumes used

and their bibliographical references are
SGA 1 (Grothendieck 1971)
SGA 4 vol.1 (Artin, Grothendieck, and Verdier 1972)
SGA 4 1

2 (Deligne 1977)
SGA 5 (Illusie 1977)

stw suhrkamp taschenbuch wissenschaft
Zbl. Zentralblatt für die Mathematik und ihre Grenzgebiete, Berlin:

Springer
Ω Ω-Bibliography of Mathematical Logic, ed. Gert H.Müller. Hei-

delberg: Springer 1987

A.2 Mathematical symbols and abbreviations

AB 3 etc. see 3.3.3.4
AC the axiom of choice
AFA the antifoundation axiom; see (Barwise and Moss 1991)
Cat the category of all categories
Cop the category dual (or opposite) to C
CH the continuum hypothesis
CT category theory
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ETCS Lawvere’s “elementary theory of the category of sets”, see 7.2.1
E/X the category of espaces étalés over the space X (see 3.3.3.1)
FA the foundation axiom
Grp the category of groups
Htop the homotopy category (objects: topological spaces; arrows: ho-

motopy classes of continuous mappings)
NBG v.Neumann–Bernays–Gödel class theory
Open(X) the category whose objects are the open sets of a topological

space X and whose arrows are the inclusions between these sets
P(X) the power set of a set X

Set the category of sets
Shv(X) the category of sheaves (presheaves fulfilling the sheaf condi-

tions) of sets over the space X (see 3.3.3.1)
Top the category of topological spaces
ZF Zermelo–Fraenkel set theory
ZFC ZF + AC

A.3 Bourbaki
For more on the Bourbaki sources, see (Krömer 2006b).

n°X Bourbaki manuscript number X

La Tribu X Number X of Bourbaki’s internal journal La Tribu (collecting
the minutes of the Bourbaki congresses)

congress X shorthand for “congress to which La Tribu X belongs”
(1951.2) etc. This shorthand serves to have the chronology present without

consulting my article on Bourbaki; (1951.2) signifies the second
congress of 1951 (usually, there were three each year).
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countability, 221, 247, 265, 307
counterexample, 9, 118, 230, 287
covering, 58, 59, 109, 111, 118, 132,

141, 173–175, 190, 263
finite, 50, 118, 119
refinement, 58, 67, 68, 111, 154

criterion problem, 11–13, 15, 30, 80,
94, 300, 305, 310, 314

cumulative hierarchy, xxiii, 237, 238,
244, 259, 271, 276, 295

curve
algebraic, 141, 169, 179, 186
closed, 223

cut elimination, 27, 28
cycle, 48, 50, 55, 56, 58, 67

algebraic, 188
co-, 55, 56
infinite, 55
regular, 52, 54, 55, 58
Vietoris, 52, 58

decidability, 240, 265, 267, 268, 272,
273, 293, 297

decomposition of arrows, 86, 101, 141
deduction, 11, 13, 15, 22, 28, 80, 94,

160, 293, 311
formal, 26
vs. expression, xxvi, xxvii, 93,

94, 159, 160, 300
deductive hull, 11, 16, 80
definability, 14, 70, 208

first-order, 144, 178, 271
formal, 299

definition, 8, 10, 12, 15, 32, 72, 94,
151, 170, 194, 216

explicit, 246
formal, 2, 6–10, 13, 21, 29, 30,

32, 35, 36, 200, 207, 216,
232, 242, 246, 301, 304, 306–
308, 312–314, 316

informal, 9, 246, 312
partial, 238
recursive, 7, 98

denotation, 28, 79
denumerability, see countability
derived, see functor, category
descent, 161, 173, 177, 190, 228
description, 7, 25, 50, 63, 68, 167,

210, 217, 253, 261, 271, 286,
293, 314

diagram
commutative, 49, 59, 73, 81–84,

98, 100, 114, 167, 174, 191,
205, 215, 222, 226, 227, 252,
287, 288, 292, 311, 312

dual, 84, 174
diagram chasing, 152, 153, 172, 207,

220, 223, 226, 306
diagram language, xxiv, xxvii, 83, 85,

142, 143, 146, 147, 174, 199,
205, 218, 292, 301, 307

diagram scheme, 94, 147
dictionnaire, 165, 188, 224
didactics, see learning
differential equation, 95, 300
dimension

of a manifold, 43, 44, 72, 184,
212

of a variety, 121, 141, 179, 185
of a vector space, see vector space
of homology groups, 43, 47, 48,

55, 71, 72, 83, 87, 198, 227
of n-space, 19
third, 24

direct product, 60, 61, 83, 85, 91,
146, 213, 311

infinite, 94, 145, 147, 151, 254,
285, 298

direct sum, 57, 58, 82, 99, 102, 138,
147, 151

infinite, 137, 139, 140, 143, 146,
147, 151, 174, 254, 262, 285

domain
co-, see range
of a function, 63, 85, 133, 171,

223, 224, 245, 307
of a functor, 63, 74, 91, 104, 148,
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199, 202, 216, 223–225, 228,
238, 241, 245, 246, 253, 255,
307

of an arrow, 64, 86, 143, 230
dual category, see category
duality, 83–86, 92, 101–103, 135, 136,

206, 222
“axiomatic”, 86
“functional”, 86

duality principle, 83, 86, 102, 103,
136, 304

duality theorem, 45, 54, 104, 182–
184, 194

Alexander, 71
Poincaré, 19, 107, 180, 184
Pontrjagin, 52, 54, 56, 57, 61,

74, 75, 102, 201
dualization procedure, 188

categorial, 83, 85, 102, 136, 153,
169

eigenvalue, 182, 185, 186
element

of a set, xxvii, 43, 77, 83–85,
142, 146, 184, 198, 211, 213,
214, 237, 240, 257, 260, 286,
306

of an object, 152, 170–172, 198,
213, 220, 222, 285, 313

embedding, 45, 85–87, 116, 147, 152,
153, 173, 177, 184, 220, 269,
298, 308

empirism, 23, 29
endomorphism, 42, 43, 98, 185
entity, 1, 21, 29, 211, 301
epimorphism, 143
epistemology, xxi–xxv, xxvii, xxxv,

1, 2, 9, 12, 14–17, 20–26, 30,
34, 36, 38, 80, 160, 168, 169,
191, 208, 227, 236, 261, 268,
269, 272, 282, 292, 300, 304,
305, 314–316

equality, 64, 117, 222, 230, 234, 299
extensional, 221, 224

intensional, 221
of functions, 218, 223, 224

equation, 61, 72, 143, 146, 147, 149,
150, 184, 226

algebraic, xxvi, 168, 178
functional, 179, 180, 186
without solutions, 172

equipotence, 52
of the plane and the line, 32, 212

equivalence
of categories, 94, 133, 134, 148–

152, 155, 167, 168, 175, 190,
218, 222, 228–233, 262, 279,
280, 284, 285

of definitions, 133, 135
Erlangen program, 188, 218, 290, 291
étale cohomology, see cohomology
Euler–Poincaré formula, 42, 43, 164,

179
everywhere dense, 82
exact sequence, see sequence
exactness property, 176, 178
existence, 1, 24, 292, 304

of classes, 213, 237, 276
of large cardinals, 249, 264, 265,

270, 276, 285
of particular arrows, 50, 63, 64
of particular objects, xxiv, 64, 85,

91, 167, 171, 174, 178, 202,
254, 285, 299

of sets, 20, 268, 270, 277, 292,
296, 299, 309, 310, 313

expert, xxxvi, 9, 37, 72, 79, 80, 163,
198, 242, 250, 288, 290, 309,
310

explication, 2, 10, 11, 13, 21, 29, 73,
75, 79, 91, 165, 172, 208,
210, 239, 304, 310

grasping an intended model, 2,
13, 14, 20, 21, 29, 35, 70, 75,
79, 200, 239, 242, 279, 288,
295, 297, 306, 307, 313, 315

exposition, xxxv, 71, 79, 162, 178,
182, 196, 216, 232, 244, 277,
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309
expression

formal, xvii, 9, 11, 28, 79, 184,
285

of a matter of fact, 8, 20, 55–
59, 73, 77, 83, 113, 141, 159,
160, 184, 205, 246, 293, 294,
308, 309

vs. deduction, xxvi, xxvii, 159,
300

well-formed, 9, 11
expressive means, 15, 26, 42, 48, 53,

58, 97, 100, 105, 159, 160,
165, 168, 203, 214, 241, 278

of category theory, 16, 81, 133,
143, 146, 147, 152, 171, 172,
174, 207, 220–222, 226, 257,
280, 286, 293–295, 307, 311

of set theory, 27, 143, 144, 255,
256, 259, 299, 306

extension (operation)
of a field, 53, 179
of a functor, 64
of a group, see group
of a model, 272
of a section, 116
of a structure, 311
of an axiom system, 244, 268,

273, 279, 293
conservative, 268, 279

extension (set), see equality, 277, 300,
311

of a concept, 7, 10, 11, 20, 22,
29, 209, 219, 221, 240, 275,
286, 294, 306, 309

of a proposition, 28, 79

family, 10, 53, 115, 116, 132, 137,
138, 141, 143, 145, 147, 151,
174, 197, 198, 238, 254, 258,
263, 299

family resemblance, 187, 207
Fermat conjecture, 162, 172
fibre, see bundle, category, space

of a sheaf, 113, 115, 117, 165,
184, 199

field, 117, 122, 163–165, 189
additive group, 56
algebraic number -, 179
algebraically closed, 163, 170, 180,

185, 187
class -, 53
finite, 178–181, 185
multiplicative group, 53
of char p > 0, 181, 186, 187
of char 0, 181
of complex numbers, 179, 185,

187
of rational functions, 163, 178
of real numbers, 210

finitely generated, 119
algebra, 189
object, 220, 280

forcing, 272
formal power series, 308
formal system, xxiii, 12, 27, 267, 275,

295, 297, 301
formal, “purely”, 225, 246, 253, 263,

269, 292, 298, 303, 306–308,
312, 314

formalism, 2, 29, 47, 209, 282, 301,
306, 307

formalist-positivist doctrine, 6, 29, 32,
208, 267, 277, 283

formalization, 6, 8, 9, 11, 27, 29, 32,
79, 94, 200, 214, 232, 238,
270, 303, 308, 313, 316

formula, 28, 47, 220
first-order, 244
of set theory, 299
second-order, 244

foundation, xxi, xxiii, xxviii, xxxvi,
2, 5, 6, 15, 21, 23, 26, 208,
211–213, 245, 247, 267, 277,
281, 283, 284, 286–288, 290,
291, 293, 296–300, 309, 314

categorial, xxi, xxv, xxvii, xxxi,
xxxv, 211, 229, 281, 284, 285,
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287, 288, 295, 296, 300–302
local, 290, 291
“mathematical”, 208–210, 282, 284,

288, 292, 301
of a discipline, 76, 96, 122, 189,

233, 282, 283, 309
“philosophical”, 208–210, 282, 283,

284, 288, 300, 301
set-theoretical, xxii, xxiii, xxxii,

13, 15, 20, 21, 86, 210–212,
282, 284, 285, 291, 299, 301,
315

for CT, xxii, xxiii, xxv, xxvii,
xxviii, xxxi, xxxv, 1, 35, 61,
86, 145, 149, 170, 220, 228,
230, 233, 235, 238, 241–245,
247, 248, 250, 255, 261, 263,
266, 268, 269, 273, 274, 276,
279, 280, 295–299, 309, 313,
314

Frobenius morphism, 180, 182, 185,
186

fruitfulness, xxii, xxx, xxxi, 9, 90, 94,
203, 210, 222, 312

function, see field, 42, 43, 47, 48, 63,
70, 75, 87, 88, 103, 107, 113,
115, 120, 143–146, 173, 201,
211, 214–218, 222–226, 237,
245, 254, 270, 285, 304, 307

bijective, 74, 118, 133, 145, 189,
214, 221, 231, 233, 280, 313

closed, 108
complex-valued, 166
continuous, 10, 39, 41–47, 49, 50,

52, 56, 63, 67, 68, 72, 76,
104, 106–108, 110, 111, 113,
114, 119, 133, 134, 141, 142,
166, 171, 180, 201, 216, 218,
223, 237

holomorphic, 133
injective, 132, 143, 218, 229, 275
L-, 181
monotoneously increasing, 89
open, 173

propositional, 290
rational, 179, 180
regular, 165
simplicial, 67
structure-preserving, 193, 214–

217, 311
surjective, 43–46, 57, 58, 84, 86,

92, 111, 115, 118, 132, 143,
218, 229

function space, 77, 126
functor

adjoint, xxiv, 16, 87, 90–93, 149,
150, 175, 184, 202–206, 241,
259, 289

as a morphism of categories, 67
cohomology, 82, 126, 134, 137
contravariant, 88, 101, 135, 136,

165, 174, 246, 251
covariant, 62, 69, 82, 88, 90, 101,

102, 104, 129, 135, 136, 148,
251

derived, 53, 58, 97–102, 104, 105,
111, 116, 118, 120–122, 135–
137, 140–142, 148, 155, 183,
189, 190, 198, 201, 250, 251

exact, 97, 100, 116, 135, 136, 153,
251

Ext, 40, 51, 53, 58, 59, 100, 249–
251, 253

faithful, 229, 269, 298, 308
forgetful, 204, 205, 216
full, 153, 269, 298, 308
group-valued, 67, 68, 152, 201,

246, 247, 253
Hom, 40, 53, 56, 59, 90, 100,

109, 135, 183, 188, 200–202,
205

homology, 39, 42, 45, 67, 68, 77,
82, 103, 171, 196, 197, 204

inclusion, 141, 150, 175
mapping function, 39, 42, 44, 48,

50, 51, 59, 67, 68, 72, 73, 77,
83, 109, 111, 115, 129, 165,
171, 201, 229, 246
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object function, 100, 246, 254
representable, see object, 162, 169,

200, 299
set-valued, 229, 294

Galois theory, 185, 190
game theory, 11
generator, 94, 122, 137, 139, 140, 147,

150, 151, 224, 251, 253, 254
genus of a curve, 169
geometry, xxvi, xxvii, 13, 31, 32, 83,

134, 154, 162, 166–170, 172,
173, 176, 177, 188–190, 195,
197, 213, 218, 226, 271, 283,
290, 291

“arithmetical”, 119, 162
algebraic, see algebraic geome-

try
complex, 109, 117
differential, 92, 163, 273
euclidean, 271
projective, 86

graph, 83, 147, 214, 226, 227, 287
finite, 147
infinite, 147, 214

grasp (cognitive capacity), xxvii, 9,
10, 17, 21, 23, 26, 28, 33,
48, 79, 80, 90, 98, 246, 305,
309, 316

Grothendieck
group, 254
topology, 64, 173, 174, 178, 182–

184, 190
topos, 161, 172, 175–178, 183,

188, 199, 202, 233, 291
universe, 229, 238, 242, 244, 245,

247–249, 252, 254, 255, 257–
263, 265, 266, 268–271, 275,
276, 279, 291, 298, 306, 308,
310

group, 11, 45, 48, 62, 66, 71, 84, 109,
133, 214, 216, 218, 223, 224,
254, 259, 278, 302

- extension, 52–54, 58, 66, 131

- representation, 188, 224, 230
abelian, 44, 51–54, 57–59, 67, 74,

82, 84, 86, 96, 102, 121, 131,
134, 137, 150–153, 195, 196,
201, 202, 253, 254, 257, 275

acting on a set, 218, 224
algebraic, 188
character -, 54, 71, 74, 102, 201
cohomology -, see cohomology

group
compact, 75, 82, 102
cyclic, 57, 197
discrete, 54, 75, 86, 102
factor -, 45, 71
finite, 57, 197, 221
finitely generated, 49
free, 51, 53, 54, 58, 59, 73, 84,

195, 196, 204, 205, 254
fundamental, 39, 43, 72, 162, 173
Galois -, 53
homology -, see homology group
in the sense of Poincaré, 39, 41,

106, 218
limit -, 40, 50, 60, 63, 64, 197
multiplication of two groups, 71
of automorphisms, 257
of chains, 59, 67, 78, 154, 197
of cochains, 59, 197
of coefficients, 44, 55–57, 107, 109,

153, 156, 197
of group extensions, 52–55, 57–

60, 67, 71, 73, 153
proalgebraic, 188
quotient -, 58, 82, 85, 86, 131
regarded as a category, 61, 62,

215, 217, 225, 227
sub-, 45, 58–60, 62, 66, 73, 84–

86, 131, 216
substitution -, 41
symmetric, 290, 291
topological, 52, 54, 55, 60, 74,

82, 201
transformation -, 177, 188, 216,

218, 290, 291
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group homomorphism, 39, 43, 45–51,
56–61, 63, 64, 66–68, 71–74,
82–86, 92, 107, 118, 131, 171,
195, 197, 214, 216, 218, 237

continuous, 60, 74
group theorists, 46
groupoid, xxv, 92, 109, 195

fundamental, 109, 156, 224
Grp, see category of groups

Hausdorff space, see space
Hegelianism, xxxi
Hilbert’s program, 20, 282
Hom-set, 53, 62, 86, 103, 113, 138,

143, 143, 145, 146, 171, 172,
187, 200–202, 205, 230, 248,
249, 253, 254, 262, 274, 275,
298, 299

homeomorphism, 42, 60, 171
local, 111, 133, 175

homological algebra, xxvi, xxviii, xxxii,
68, 90, 93, 95, 96, 98, 99,
104, 106, 109, 111, 122, 123,
125, 127, 128, 131, 135, 148,
152, 154, 155, 158, 172, 184,
195, 196, 249, 251, 254, 275

homology, 41, 44, 48, 50–52, 55–58,
67, 68, 76, 77, 82, 83, 91,
94, 98, 107, 108, 194, 196,
197, 202, 227, 232

Čech, 49, 50, 58, 59, 68, 78, 82,
109

simplicial, 89, 109, 154, 196, 197
singular, 78, 89, 109, 154

homology group, 39–45, 47–52, 55–
58, 63, 67, 68, 72, 76–79, 97,
99, 100, 107, 171, 194, 197,
221

relative, 83
homology theory, 43, 46, 63, 66, 68,

76–81, 83, 87, 96–98, 101–
103, 109, 196, 234

axiomatic, 68, 76–84, 89, 97, 102,
109, 153, 154, 159, 191, 194,

197, 242, 255
for general spaces, 39, 40, 49, 50,

54, 58, 63
homomorphism, 129

crossed, 224
natural, 56, 58–60, 63, 66, 67,

71, 73, 74
of groups, see group homomor-

phism
of modules, 49, 99, 103, 111–114,

133, 205
of presheaves, 132
of sheaves, 113–115, 129

homotopy, see chain homotopy, 42
homotopy category, 215, 319
homotopy class of a mapping, 39, 42,

44, 45, 52, 56, 319
homotopy group, 72

relative, 47
homotopy invariant, 44, 77, 98
homotopy sequence, 72
homotopy theory, xxix, 40, 76, 89, 90
hyperset, 240, 276
hypothetical-deductive, 22, 259, 267–

269, 273, 308

icon, 227
ideal, 99, 166, 169, 170

maximal, 165
prime, 164, 166, 170, 179

idealism, 23
identification, 29, 145, 171, 211, 214,

218, 219, 221, 222, 233, 254,
262, 280

- criterion, 29, 62, 101, 221–223,
228, 229, 231, 232, 234, 280,
288

image, 71, 72, 112, 115, 118, 152, 253
direct, 142, 183
inverse, 107, 111, 165, 168, 275

incidence number, 195, 196, 219, 226
inclusion, 51, 85, 107, 111, 173, 174,

182, 199, 215, 319
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independence
base -, 73, 290
logical, 14, 20, 80, 263
of set theory, 273, 291, 293, 294

index
- set, 60, 118, 138, 139, 143, 147,

174, 197, 228, 238, 242, 251,
252, 254, 263, 285

notation, 51, 55
of an ordinal, 264

induction, 27, 277
transfinite, 139, 267

inference rule, 285
infinity, 23, 248, 256, 259, 267, 278,

295
informal content, 2, 7–10, 13, 20, 21,

29, 39, 71, 131, 172, 175,
200, 232, 233, 246, 270, 289,
301, 302, 304, 308, 312, 315

information, 12, 68, 83, 92, 171, 172,
177, 193, 212, 218, 219, 222,
268, 293, 311

injective, see function, module, ob-
ject, resolution

insight, 4, 12, 14, 22, 30, 32–34, 160,
191, 219

instance, see model
integers, see coefficients, 42, 53, 57,

71, 88, 182, 185, 270
algebraic, 179, 182

integration theory, 74
intellect, 2, 6, 213, 316
interaction, xxvi–xxix, xxxiv, 4, 5,

10, 16, 18, 19, 54, 83, 193,
194, 197, 218, 224, 233, 311

intersection, 174, 175, 199
finite, 10, 174

intersection number, 179
intersubjective, see subject
introspection, 25
intuition, xxvii, xxx, 9, 20, 22–26,

30–34, 36, 48, 98, 133, 136,
166, 169, 170, 172, 173, 176,
198, 211, 214, 242, 245, 257,

258, 261, 268, 284, 286, 290,
294, 295, 301–304, 306, 310,
312, 314–316

spatial, 10, 168, 222, 312
invariant, 39–42, 49, 58, 76, 78, 86,

92, 97, 119, 141, 163, 164,
167, 194, 212, 230, 290, 291,
293

isomorphism, 56, 64–66, 146, 187, 211,
212, 222, 229, 230, 241, 253,
287

bijective, 221, 231, 293, 299
categorial, 86, 128, 146, 189, 201,

214, 218, 221, 221, 222, 229–
231, 251, 262, 299

of categories, 222, 228, 229, 229,
230, 231, 233, 262

of direct systems, 61, 63
of functors, xxiv, 61, 63, 66, 71,

90, 149, 150, 154, 184, 229,
230, 232, 246, 262

of groups, 58–61, 63, 67, 73, 78,
107, 109, 118, 131, 153, 154,
156, 197, 221, 247, 254

of inverse systems, 60, 63, 73
of modules, 112, 113, 132, 133,

205
of ringed spaces, 165
of sheaves, 132, 133, 254
of vector spaces, 201, 232

isomorphism theorem, 104
iteration, 97, 237, 270, 271, 306

K-theory, xxix
kernel, 57, 71, 72, 98, 99, 115, 116,

131, 253
co-, 98, 139, 150, 253

knot theory, 11

language, see expressive means, xxiv,
7, 17, 19, 20, 29, 30, 32–34,
149, 156, 160, 175, 209, 281,
304
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categorial, xxxi, 89, 100, 109, 126,
130, 133, 143, 157, 170, 171,
195

common, xviii, 27, 31, 75, 130,
207

first-order, 144, 220, 284, 285,
287, 297

formal, 7, 144, 265, 268, 285, 297
informal, 17, 69–75, 230
meta-, 265, 307
natural, 29
object -, 307
set-theoretical, 25, 143, 298
vs. tool, xxv, 40, 65, 66, 94, 158,

159, 184, 241, 242, 261
language game, 2, 7–10, 207, 213, 216,

267, 295
lattice, 175, 241
learning, xxvii, 5, 7–10, 25, 29, 32,

33, 37, 78, 79, 162, 200, 205–
207, 216, 220, 228, 232, 267,
302, 315

Lefschetz fixed point formula, 19, 39,
41–44, 119, 142, 180–183, 186

Lie algebra, see cohomology
Lie group, 106
limit

co-, 220, 280, 285
direct (inductive), xxv, 40, 45–

47, 50, 54, 58, 61–63, 68,
82, 83, 90, 92, 106, 111, 112,
138, 195, 225, 251, 254

general, 64, 90, 91, 93, 148, 198
infinite, 143, 145, 146, 183, 213,

220, 241, 249, 254, 260, 265,
280, 285, 297, 303

inverse (projective), xxv, 40, 46,
47, 50, 52, 54, 58–63, 82, 83,
90–92, 182, 188, 195, 197,
213, 225, 228

linear combination, 196
linear transformation, 31, 86, 201
local vs. global, 104, 111, 116, 118,

163, 165

localization, 173, 176, 182, 184
locally small, 249, 251–253, 298, 299
logic, xxii, xxvii, xxxv, 2, 4, 6, 13,

14, 20, 26, 27, 69, 242, 245,
253, 256, 277, 282, 287, 290,
299

categorial, 291
first-order, 11
“geometric”, 290
mathematical, xvii, xxi, xxxvi,

5, 6, 12, 144, 210, 249, 250,
274, 281, 290, 291, 300, 301

predicate -, 287
propositional, 28, 290
two-valued, 290

logical connective, 278
logical connectives, 27, 28, 301
logicism, 13, 20, 26, 209, 301
loop, 91
Łwow school (philosophy), xxxv

manifold, 43, 46, 49, 50, 93, 108, 166,
169, 177, 184, 186

map (differential geometry), 108, 163
mapping, see arrow, function
Mayer–Vietoris sequence, 51, 76
meaning, 28, 75, 79, 170

-ful, 9, 11, 30, 207, 225, 240, 300,
314

-less, 31, 47, 49, 260, 308
intended, 2, 16, 172, 217, 239

metamathematics, xxv, 22, 65, 70,
80, 86, 144, 167, 208, 246,
257, 260, 261, 266, 279, 305,
307, 309, 310

metatheorem, 83, 102, 155, 268, 286
mind, 12, 33, 34, 37, 294
model, 8, 11, 14, 15, 21, 35, 41, 77,

80, 197, 200, 202, 204, 207,
214, 216, 217, 221, 224, 242,
287, 293, 297, 307, 311, 312

intended, xxiii, 2, 13, 14, 20, 21,
29, 35, 200, 207, 217, 237,
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238, 240, 242, 271, 277, 288,
297, 305, 306, 310, 313, 315

isomorphic, 272
nonisomorphic, 293, 313
of set theory, 243, 247, 248, 257,

259, 271–273, 293
inner, 279
nonstandard, 14, 29, 211, 272,

293
model theory, xviii, 275, 281, 284,

286, 290, 291
module, xxvi, 82, 95, 96, 98–100, 103–

105, 108, 109, 111–115, 128,
134, 137, 138, 171, 183, 198,
199, 201, 205, 206, 250

D-, 95
free, 42, 99, 205, 250
graded, 42
injective, 99, 99, 117, 121, 135–

137
projective, 99, 135
quotient -, 99, 159, 250
sub-, 99, 159

modulus, 162, 169, 233
monoid, 215
monomorphism, 84, 86, 138, 143–146,

159, 221, 299
Mordell conjecture, 162
morphism, see arrow, 44, 46, 53, 74,

75, 92, 113, 132, 137, 139,
140, 143–145, 166, 167, 184,
188, 214, 215, 225, 227, 229,
230, 233, 291, 311

étale, 173, 174
of Cat, 234
of direct or inverse systems, 64
of schemes, 165, 166, 168, 183
of toposes, 176
of varieties, 141, 185, 189

motive (Grothendieck), 185–188

natural (vs. artificial), xxii, xxx, 6,
9, 28, 32, 53, 54, 71–74, 89,
126, 129, 145, 165, 176, 231,

233, 234, 257, 273, 280, 286,
287, 291, 296, 302, 306

natural construction, 68, 231, 234
natural sciences, 219
natural transformation, xix, 30, 39,

61, 64, 66, 68–70, 72, 74,
129, 138, 148, 149, 154, 204,
215, 229, 238, 245, 246, 253,
257, 260, 263, 303, 306

neighbourhood, 47, 106, 111, 112, 114
nerve

of a category, 263
of a covering, 50, 58, 59, 119

nilpotent element, 165, 166, 168
nominalism, 29
normative, 2, 15, 259, 283
notation, xvii, 46, 48, 49, 51, 53, 59,

60, 72, 73, 90, 108, 126, 133,
155, 175, 245, 248, 258, 297

number, see field, integers, 29, 31,
210, 211, 301

algebraic, 179
complex, 179
imaginary, 185
natural, 26, 27, 88, 267, 301
p-adic, 55
prime, 187
rational, 27, 270
real, 21, 45, 270

number theory, 11, 162
algebraic, 51, 300
analytic, 300
elementary, see arithmetic
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